Patents by Inventor Hosein Nikopour

Hosein Nikopour has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11956104
    Abstract: Millimeter-wave (mmWave) and sub-mmWave technology, apparatuses, and methods that relate to transceivers and receivers for wireless communications are described. The various aspects include an apparatus of a communication device including one or more antennas configured to receive an RF signal and an ADC system. The ADC system includes a 1-bit ADC configured to receive the RF signal, and an ADC controller circuitry configured to measure a number of positive samples in the received RF signal for a plurality of thresholds of the 1-bit ADC, estimate receive signal power associated with the received RF signal based on the measured number of positive samples, determine a direct current (DC) offset in the received RF signal using the estimated received signal power, and adjust the received RF signal based on the determined DC offset.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Oner Orhan, Hosein Nikopour, Mehnaz Rahman, Ivan Simoes Gaspar, Shilpa Talwar, Stefano Pellerano, Claudio Da Silva, Namyoon Lee, Yo Seb Jeon, Eren Sasoglu
  • Patent number: 11955732
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11956001
    Abstract: A mobile communication device that is configured to cancel interference within received millimeter wave band signals. The device includes a receiver circuit that is configured to receive a millimeter wave band signal, adjust gain provided to the millimeter wave band signal at a first amplifier, cancel interference in millimeter wave band signal after gain is adjusted by the first amplifier, and adjust gain provided to the millimeter wave band signal at a second amplifier after interference is cancelled.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: April 9, 2024
    Assignee: Apple Inc.
    Inventors: Mikhail T. Galeev, Oner Orhan, Arnaud Lucres Amadjikpe, Benjamin Grewell, Navid Naderializadeh, Hosein Nikopour, Susruth Sudhakaran, Shilpa Talwar, Liang Xian
  • Patent number: 11949474
    Abstract: Apparatuses of a user equipment (UE), a cellular base station, and radio access network (RAN) nodes are disclosed. An apparatus of a wireless communication device includes circuitry configured to measure reference signals received from a plurality of antennas of an other wireless communication device, and circuitry configured to cause one or more antennas of the wireless communication device to transmit information regarding the received reference signals back to the other wireless communication device to enable the other wireless communication device to estimate a utility function for different transmit parameter sets.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: April 2, 2024
    Assignee: APPLE INC.
    Inventors: Jan Schreck, Nageen Himayat, Hosein Nikopour, Feng Xue, Ehsan Aryafar, Oner Orhan, Mustafa R. Akdeniz, Wook Bong Lee, Jing Zhu
  • Patent number: 11943022
    Abstract: Systems and methods of beamforming and improving mmWave communications for drones are described. Multiple RF chains are used to adapt the main beam to track changes without the use of pilot signals. To reduce interference, interfering signal power is eliminated by optimizing a non-Gaussian measure to extract the interferers. The AoA of signals from a target drone on neighbouring drones and location of the neighbouring drones and base stations are used to independently corroborate the location reported by the target drone. The base station provides additional synchronization signals below 6 GHz and restricts the search/measurement space in the vertical direction. The inherent sparse structure above 6 GHz is exploited by applying different beamformers on a sounding signal and estimating the AoA and impulse response. Variations of fully digital and hybrid beamforming architectures for multi-cell DL sync and CRS measurement are described.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Venkatesan Nallampatti Ekambaram, Yang-Seok Choi, Junyoung Nam, Feng Xue, Shu-ping Yeh, Hosein Nikopour, Shilpa Talwar, Jan Schreck, Nageen Himayat, Sagar Dhakal
  • Patent number: 11936481
    Abstract: A method embodiment includes implementing, by a base station (BS), a grant-free uplink transmission scheme. The grant-free uplink transmission scheme defines a first contention transmission unit (CTU) access region in a time-frequency domain, defines a plurality of CTUs, defines a default CTU mapping scheme by mapping at least some of the plurality of CTUs to the first CTU access region, and defines a default user equipment (UE) mapping scheme by defining rules for mapping a plurality of UEs to the plurality of CTUs.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: March 19, 2024
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Kelvin Kar Kin Au, Hosein Nikopour, Petar Djukic, Zhihang Yi, Alireza Bayesteh, Jianglei Ma, Mohammadhadi Baligh, Liqing Zhang
  • Publication number: 20240064716
    Abstract: This disclosure describes systems, methods, and devices related to enhanced transmission. A device may generate an aggregated medium access control protocol data unit (A-MPDU) frame, wherein the A-MPDU is associated with transmission of n Network Coding (NC) encoded frames. The device may divide the A-MPDU frame into k data frames and (n?k) parity frames within the A-MPDU frame. The device may transmit the k data frames. The device may transmit to a station device (STA) at least one of the (n?k) parity frames separately after the data frames in response to packet drops in the k data frames.
    Type: Application
    Filed: October 31, 2023
    Publication date: February 22, 2024
    Inventors: Minyoung PARK, Wei MAO, Laurent CARIOU, Ehud RESHEF, Danny ALEXANDER, Daniel BRAVO, Chen KOJOKARO, Hosein NIKOPOUR
  • Publication number: 20240046796
    Abstract: Methods, apparatus, systems and articles of manufacture are disclosed to validate data communicated by a vehicle. An example apparatus an anomaly detector to, in response to data communicated by a vehicle, at least one of compare an estimated speed with a reported speed or compare a location of the vehicle with a reported location. The apparatus including the anomaly detector further to generate an indication of the vehicle in response to the comparison. The apparatus further includes a notifier to discard data sent by the vehicle and notify surrounding vehicles of the data communicated by the vehicle.
    Type: Application
    Filed: August 15, 2023
    Publication date: February 8, 2024
    Inventors: Liuyang Yang, Yair Yona, Moreno Ambrosin, Xiruo Liu, Hosein Nikopour, Shilpa Talwar, Kathiravetpillai Sivanesan, Sridhar Sharma, Debabani Choudhury, Kuilin Clark Chen, Jeffrey Ota, Justin Gottschlich
  • Publication number: 20240049272
    Abstract: A device may include a processor configured to provide input data that is based on channel information representative of attributes associated with one or more established communication channels of a plurality of communication devices to a trained machine learning model configured to determine a score for each of the plurality of communication devices based on the input data, wherein the score represents a likelihood of the respective communication device to be scheduled for a communication resource to perform a communication, determine, for the communication resource, one or more communication devices from the plurality of communication devices based on the determined score for each of the plurality of communication devices, and provide an output to schedule the communication resource for the one or more communication devices
    Type: Application
    Filed: July 29, 2022
    Publication date: February 8, 2024
    Inventors: Oner ORHAN, Hosein NIKOPOUR
  • Publication number: 20240021522
    Abstract: Various devices, systems, and/or methods perform wireless chip to chip high speed data transmission. Strategies for such transmission include use of improved microbump antennas, wireless chip to chip interconnects, precoding and decoding strategies, channel design to achieve spatial multiplexing gain in line of sight transmissions, open cavity chip design for improved transmission, and/or mixed signal channel equalization.
    Type: Application
    Filed: December 23, 2020
    Publication date: January 18, 2024
    Inventors: Tolga ACIKALIN, Tae Young YANG, Debabani CHOUDHURY, Shuhei YAMADA, Roya DOOSTNEJAD, Hosein NIKOPOUR, Issy KIPNIS, Oner ORHAN, Mehnaz RAHMAN, Kenneth P. FOUST, Christopher D. HULL, Telesphor KAMGAING, Omkar KARHADE, Stefano PELLERANO, Peter SAGAZIO, Sai VADLAMANI
  • Publication number: 20240023028
    Abstract: The present disclosure discusses network energy savings (NES) machine learning (ML) models that predict NES parameters used to adjust control parameters of respective network nodes in a wireless network, wherein the NES parameters can be used by the respective network nodes to adjust their control parameters, such that the wireless network realizes or achieves NES as a whole. The wireless network is represented as a graph with heterogeneous vertices that represent corresponding network nodes and edges that represent connections between the network nodes. The NES ML model comprises a graph neural network (GNN) and a fully connected neural network (FCNN). The GNN may be a graph convolutional neural network or a graph attention network. The FCNN may be a multi-layer perceptron, a deep neural network, and/or some other type of neural network. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 20, 2023
    Publication date: January 18, 2024
    Inventors: Hosein Nikopour, Oner Orhan, Vasuki Narasimha Swamy
  • Publication number: 20230422096
    Abstract: Various embodiments herein provide techniques for integrated access and backhaul (IAB) nodes. For example, embodiments include techniques associated with: rate-proportional routing for network coding; utilizing multiple routes in IAB networks; user equipment (UE) and parent selection for efficient topology in IAB networks; establishing efficient IAB topologies; and/or adaptive coded-forwarding for network coding. Other embodiments may be described and claimed.
    Type: Application
    Filed: August 15, 2023
    Publication date: December 28, 2023
    Inventors: Wei Mao, Murali Narasimha, Jaemin Han, Meryem Simsek, Hosein Nikopour, Sudeep Palat, Navid Naderializadeh
  • Publication number: 20230412314
    Abstract: Logic to determine a first set of packets for transmission to a second STA in an aggregated medium access control (MAC) protocol data unit (A-MPDU). Logic to identify a retransmission scheme to determine a first number of packets to transmit based on the first set of packets. Logic to generate network coded packets for transmission in the A-MPDU, wherein the network coded packets comprise encoded combinations of the first set of packets. Logic to generate the A-MPDU for transmission to the second STA with the first number of packets. Logic to cause transmission of the A-MPDU. And logic to receive a block acknowledgement (BlockAck) comprising a feedback value, wherein the feedback value is a number of additional network coded packets requested by the second STA to decode the first set of packets or a number of packets received by the second STA.
    Type: Application
    Filed: June 16, 2023
    Publication date: December 21, 2023
    Applicant: Intel Corporation
    Inventors: Wei Mao, Minyoung Park, Hosein Nikopour
  • Publication number: 20230403568
    Abstract: Systems, apparatus, articles of manufacture, and methods are disclosed to slice networks for wireless services. Example apparatus are to implement an actor-critic neural network to predict a quality of service metric for a network slice based on a long short-term memory representative of one or more prior slicing decisions, compare the quality of service metric with a target service level specification, and update the long short-term memory based on the comparison.
    Type: Application
    Filed: June 8, 2023
    Publication date: December 14, 2023
    Inventors: Omid Semiari, Hosein Nikopour, Shilpa Talwar
  • Patent number: 11811439
    Abstract: A mobile communication device that is configured to cancel interference within received millimeter wave band signals. The device includes a receiver circuit that is configured to receive a millimeter wave band signal, adjust gain provided to the millimeter wave band signal at a first amplifier, cancel interference in millimeter wave band signal after gain is adjusted by the first amplifier, and adjust gain provided to the millimeter wave band signal at a second amplifier after interference is cancelled.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: November 7, 2023
    Assignee: Apple Inc.
    Inventors: Mikhail T. Galeev, Oner Orhan, Arnaud Lucres Amadjikpe, Benjamin Grewell, Navid Naderi, Hosein Nikopour, Susruth Sudhakaran, Shilpa Talwar, Liang Xian
  • Publication number: 20230337213
    Abstract: A central trajectory controller including a cell interface configured to establish signaling connections with one or more backhaul moving cells and to establish signaling connections with one or more outer moving cells, an input data repository configured to obtain input data related to a radio environment of the one or more outer moving cells and the one or more backhaul moving cells, and a trajectory processor configured to determine, based on the input data, first coarse trajectories for the one or more backhaul moving cells and second coarse trajectories for the one or more outer moving cells, the cell interface further configured to send the first coarse trajectories to the one or more backhaul moving cells and to send the second coarse trajectories to the one or more outer moving cells.
    Type: Application
    Filed: March 13, 2023
    Publication date: October 19, 2023
    Inventors: Biljana BADIC, Steven A. BOWERS, Yang-Seok CHOI, Miltiadis FILIPPOU, Bertram GUNZELMANN, Nageen HIMAYAT, Ingolf KARLS, Nirlesh Kumar KOSHTA, Rajkumar KRISHNAPERUMAL, Markus Dominik MUECK, Hosein NIKOPOUR, Pradeep PANGI, Jerome PARRON, Bernhard RAAF, Sabine ROESSEL, Dario SABELLA, Bernd SCHALLER, Domagoj SIPRAK, Christopher STOBART, Shashanka TOTADAMANE RAMAPPA, Sudeep MANITHARA VAMANAN, Zhibin YU, Jing ZHU
  • Patent number: 11769415
    Abstract: Methods, apparatus, systems and articles of manufacture are disclosed to validate data communicated by a vehicle. An example apparatus an anomaly detector to, in response to data communicated by a vehicle, at least one of compare an estimated speed with a reported speed or compare a location of the vehicle with a reported location. The apparatus including the anomaly detector further to generate an indication of the vehicle in response to the comparison. The apparatus further includes a notifier to discard data sent by the vehicle and notify surrounding vehicles of the data communicated by the vehicle.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: September 26, 2023
    Assignee: Intel Corporation
    Inventors: Liuyang Yang, Yair Yona, Moreno Ambrosin, Xiruo Liu, Hosein Nikopour, Shilpa Talwar, Kathiravetpillai Sivanesan, Sridhar Sharma, Debabani Choudhury, Kuilin Clark Chen, Jeffrey Ota, Justin Gottschlich
  • Patent number: 11770174
    Abstract: Aspects of mmWave beam tracking and beam sweeping are described, for example, spatial searching operations, directional beam forming, complex channel measurement operations, and adaptive power savings. Some aspects include using priori information for mmWave beam tracking and beam sweeping. Some aspects include using priori information to modify a superset of beam criteria to obtain a subset of beam criteria, select a spatial region according to the subset of beam criteria, and initiate a spatial searching operation within the spatial region for establishing a communication link. Some aspects include obtaining complex channel measurements of beams and combining the measurements with priori information to determine a beam for use in a communication link. Some aspects include providing signals from Nr over K1 input/output (IO) links and receiving signals over K1 IO links, and combining signals received over the K1 IO links, using a compression matrix, to generate signals over K IO links.
    Type: Grant
    Filed: February 21, 2022
    Date of Patent: September 26, 2023
    Assignee: Intel Corporation
    Inventors: Brent Elliott, Benjamin Grewell, Tom Harel, Junyoung Nam, Hosein Nikopour, Oner Orhan, Susruth Sudhakaran, Shilpa Talwar, Ping Wang, Liang Xian, Xiaodi Zhang
  • Patent number: 11751100
    Abstract: Various embodiments herein provide techniques for integrated access and backhaul (IAB) nodes. For example, embodiments include techniques associated with: rate-proportional routing for network coding; utilizing multiple routes in IAB networks; user equipment (UE) and parent selection for efficient topology in IAB networks; establishing efficient IAB topologies; and/or adaptive coded-forwarding for network coding. Other embodiments may be described and claimed.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: September 5, 2023
    Assignee: Intel Corporation
    Inventors: Wei Mao, Murali Narasimha, Jaemin Han, Meryem Simsek, Hosein Nikopour, Sudeep Palat, Navid Naderializadeh
  • Publication number: 20230198879
    Abstract: A system for wireless communication, the system may include a processor configured to generate encoded packets representative of input packets. The processor may also be configured to determine a probability of a transmission error for each link of a plurality of links. In addition, the processor may be configured to determine a probability of a link blockage error for each link of the plurality of links. Further, the processor may be configured to determine an allocation scheme for the encoded packets on the plurality of links based on the probability of the transmission error and the probability of the link blockage error for each link of the plurality of links. The processor may be configured to allocate the encoded packets on the plurality of links according to the allocation scheme. The processor may also be configured to instruct to wirelessly transmit the encoded packets on the plurality of links.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Inventors: Wei MAO, Hosein NIKOPOUR, Shilpa TALWAR