Patents by Inventor Hosein Nikopour

Hosein Nikopour has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210075456
    Abstract: A receiver circuit associated with a communication device is disclosed. The receiver circuit comprises a digital data compression circuit configured to receive a plurality of digital receive signals derived from a plurality of analog receive signals respectively associated with the receiver circuit. The digital data compression circuit is further configured to compress the plurality of digital receive signals to form one or more compressed digital data signals based thereon, to be provided to an input output (I/O) interface associated therewith. In some embodiments, a compressed digital signal dimension associated with the one or more compressed digital data signals is less than a digital signal dimension associated with the plurality of digital receive signals.
    Type: Application
    Filed: January 2, 2018
    Publication date: March 11, 2021
    Inventors: Oner Orhan, Hosein Nikopour, Peter Sagazio, Farhana Sheikh, Junyoung Nam, Shilpa Talwar
  • Patent number: 10945243
    Abstract: A grant-free transmission mode may be used to communicate small traffic transmissions to reduce overhead and latency. The grant-free transmission mode may be used in downlink and uplink data channels of a wireless network. In the downlink channel, a base station transmits packets to a group of UEs in a search space without communicating any transmission code assignments to the UEs. The UEs receive the downlink packets using blind detection. In the uplink channel, UEs transmit packets in an access space using assigned access codes which are either independently derived by the UEs or otherwise communicated by the base station using a slow-signaling channel. Hence, the grant-free transmission mode allows mobile devices to make small traffic transmissions without waiting for uplink grant requests.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: March 9, 2021
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Kelvin Kar Kin Au, Jianglei Ma, Hosein Nikopour, Alireza Bayesteh, Petar Djukic, Liqing Zhang, Peiying Zhu
  • Patent number: 10945244
    Abstract: A grant-free transmission mode may be used to communicate small traffic transmissions to reduce overhead and latency. The grant-free transmission mode may be used in downlink and uplink data channels of a wireless network. In the downlink channel, a base station transmits packets to a group of UEs in a search space without communicating any transmission code assignments to the UEs. The UEs receive the downlink packets using blind detection. In the uplink channel, UEs transmit packets in an access space using assigned access codes which are either independently derived by the UEs or otherwise communicated by the base station using a slow-signaling channel. Hence, the grant-free transmission mode allows mobile devices to make small traffic transmissions without waiting for uplink grant requests.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: March 9, 2021
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Kelvin Kar Kin Au, Jianglei Ma, Hosein Nikopour, Alireza Bayesteh, Petar Djukic, Liqing Zhang, Peiying Zhu
  • Publication number: 20210058989
    Abstract: Various embodiments herein provide techniques for integrated access and backhaul (IAB) networks. For example, embodiments include techniques for network coding and/or establishing delay-efficient IAB network topologies. Other embodiments may be described and claimed.
    Type: Application
    Filed: November 5, 2020
    Publication date: February 25, 2021
    Inventors: Meryem Simsek, Murali Narasimha, Jaemin Han, Wei Mao, Hosein Nikopour, Sudeep Palat
  • Publication number: 20210058826
    Abstract: Various embodiments herein provide techniques for integrated access and backhaul (IAB) nodes. For example, embodiments include techniques associated with: rate-proportional routing for network coding; utilizing multiple routes in IAB networks; user equipment (UE) and parent selection for efficient topology in IAB networks; establishing efficient IAB topologies; and/or adaptive coded-forwarding for network coding. Other embodiments may be described and claimed.
    Type: Application
    Filed: September 8, 2020
    Publication date: February 25, 2021
    Inventors: Wei Mao, Murali Narasimha, Jaemin Han, Meryem Simsek, Hosein Nikopour, Sudeep Palat, Navid Naderializadeh
  • Patent number: 10911281
    Abstract: Longer pilot sequences can be supported by transmitting pilot values of a given pilot sequence over different orthogonal frequency division multiplexed (OFDM) symbols of an uplink frame. The pilot values may be contiguous, or non-contiguous, with one another in the time domain. Consecutive pilot values in a pilot sequence may be transmitted in different OFDM symbols of the frame. For example, odd pilot values (e.g., P1, P3, P5 . . . ) in a pilot sequence may be transmitted over a different OFDM symbol than even pilot values (e.g., P2, P4, P6 . . . ) in the pilot sequence. Alternatively, a leading subset of pilot values in a pilot sequence is transmitted over a different OFDM symbol than a trailing subset of pilot values in the pilot sequence.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: February 2, 2021
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Yu Cao, Hosein Nikopour, Alireza Bayesteh
  • Publication number: 20210028840
    Abstract: Methods, apparatus, and computer-readable media are described to use multi-finger beamforming for multimeter wave communications. A base station associates with first and second user equipment. Weight sum rates are determined for the user equipment. Transmissions are scheduled to the user equipment based on the weight sum rates. Data is encoded for the first user equipment and transmitted based on the schedule. Data is encoded for the second user equipment and transmitted based on the schedule. The transmissions are multiplexed in the power domain.
    Type: Application
    Filed: July 12, 2018
    Publication date: January 28, 2021
    Inventors: Oner Orhan, Ehsan Aryafar, Brent Carlton, Nageen Himayat, Christopher Hull, Navid Naderializadeh, Hosein Nikopour, Stefano Pellerano, Mustafijur Rahman, Shilpa Talwar, Jing Zhu
  • Publication number: 20210028850
    Abstract: Aspects of mmWave beam tracking and beam sweeping are described, for example, spatial searching operations, directional beam forming, complex channel measurement operations, and adaptive power savings. Some aspects include using priori information for mmWave beam tracking and beam sweeping. Some aspects include using priori information to modify a superset of beam criteria to obtain a subset of beam criteria, select a spatial region according to the subset of beam criteria, and initiate a spatial searching operation within the spatial region for establishing a communication link. Some aspects include obtaining complex channel measurements of beams and combining the measurements with priori information to determine a beam for use in a communication link.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 28, 2021
    Inventors: Brent Elliott, Benjamin Grewell, Tom Harel, Junyoung Nam, Hosein Nikopour, Oner Orhan, Susruth Sudhakaran, Shilpa Talvvar, Ping Wang, Liang Xian, Xiaodi Zhang
  • Patent number: 10892813
    Abstract: Aspects of mmWave beam tracking and beam sweeping are described, for example, an apparatus can include an antenna array including sub-arrays and processing circuitry configured to perform beamforming, beam tracking, and management thereof at the antenna sub-arrays. The processing circuitry can further be configured to determine the angle of arrival of a received signal received in response to performing the beamforming function and adjust phase shifters of the apparatus according to the angle of arrival. Other apparatuses, systems and methods are described.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: January 12, 2021
    Assignee: Intel Corporation
    Inventors: Oner Orhan, Hosein Nikopour, Shilpa Talwar, Yang-Seok Choi, Venkatesan Nallampatti Ekambaram
  • Patent number: 10887898
    Abstract: A method embodiment includes implementing, by a base station (BS), a grant-free uplink transmission scheme. The grant-free uplink transmission scheme defines a first contention transmission unit (CTU) access region in a time-frequency domain, defines a plurality of CTUs, defines a default CTU mapping scheme by mapping at least some of the plurality of CTUs to the first CTU access region, and defines a default user equipment (UE) mapping scheme by defining rules for mapping a plurality of UEs to the plurality of CTUs.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: January 5, 2021
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Kelvin Kar Kin Au, Hosein Nikopour, Petar Djukic, Zhihang Yi, Alireza Bayesteh, Jianglei Ma, Mohammadhadi Baligh, Liqing Zhang
  • Patent number: 10887899
    Abstract: A method embodiment includes implementing, by a base station (BS), a grant-free uplink transmission scheme. The grant-free uplink transmission scheme defines a first contention transmission unit (CTU) access region in a time-frequency domain, defines a plurality of CTUs, defines a default CTU mapping scheme by mapping at least some of the plurality of CTUs to the first CTU access region, and defines a default user equipment (UE) mapping scheme by defining rules for mapping a plurality of UEs to the plurality of CTUs.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: January 5, 2021
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Kelvin Kar Kin Au, Hosein Nikopour, Petar Djukic, Zhihang Yi, Alireza Bayesteh, Jianglei Ma, Mohammadhadi Baligh, Liqing Zhang
  • Patent number: 10887900
    Abstract: A method embodiment includes implementing, by a base station (BS), a grant-free uplink transmission scheme. The grant-free uplink transmission scheme defines a first contention transmission unit (CTU) access region in a time-frequency domain, defines a plurality of CTUs, defines a default CTU mapping scheme by mapping at least some of the plurality of CTUs to the first CTU access region, and defines a default user equipment (UE) mapping scheme by defining rules for mapping a plurality of UEs to the plurality of CTUs.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: January 5, 2021
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Kelvin Kar Kin Au, Hosein Nikopour, Petar Djukic, Zhihang Yi, Alireza Bayesteh, Jianglei Ma, Mohammadhadi Baligh, Liqing Zhang
  • Publication number: 20200322896
    Abstract: Aspects for interference mitigation in ultra-dense networks are described. Configuration information for at least one co-located hotspot may be determined based on information received from a respective UE of a plurality of UEs and the configuration information may be provided to the at least one co-located hotspot. The configuration information may include an identifier for a channel on which the at least one co-located hotspot is to operate and/or a duration for which the configuration information is to remain valid.
    Type: Application
    Filed: June 9, 2020
    Publication date: October 8, 2020
    Inventors: Navid Naderializadeh, Hosein Nikopour, Shilpa Talwar, Oner Orhan, Bahareh Sadeghi, Carlos Cordeiro, Hassnaa Moustafa
  • Publication number: 20200304198
    Abstract: Aspects of mmWave beam tracking and beam sweeping are described, for example, an apparatus can include an antenna array including sub-arrays and processing circuitry configured to perform beamforming, beam tracking, and management thereof at the antenna sub-arrays. The processing circuitry can further be configured to determine the angle of arrival of a received signal received in response to performing the beamforming function and adjust phase shifters of the apparatus according to the angle of arrival. Other apparatuses, systems and methods are described.
    Type: Application
    Filed: January 28, 2020
    Publication date: September 24, 2020
    Inventors: Oner Orhan, Hosein Nikopour, Shilpa Talwar, Yang-Seok Choi, Venkatesan Nallampatti Ekambaram
  • Patent number: 10784984
    Abstract: Systems, methods, and apparatuses for providing waveform adaptation are provided. In an example, a method is provided for identifying a plurality of candidate waveforms, and selecting one of the candidate waveforms for data transmission. The candidate waveforms may be identified in accordance with one or more criteria, such as a transmission capability of the transmitting device, a reception capability of the receiving device, a desired Peak-to-Average-Power-Ratio (PAPR) characteristic, adjacent channel interference (ACI) rejection requirements, spectrum localization requirements, and other criteria. The waveform selected for data transmission may be selected in accordance with one or more waveform selection criteria, such as traffic characteristic, application types, etc.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: September 22, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Alireza Bayesteh, Hosein Nikopour, Jianglei Ma
  • Patent number: 10771305
    Abstract: Coding gains can be achieved by encoding binary data directly to multi-dimensional codewords, which circumvents QAM symbol mapping employed by conventional CDMA encoding techniques. Further, multiple access can be achieved by assigning different codebooks to different multiplexed layers. Moreover, sparse codewords can be used to reduce baseband processing complexity on the receiver-side of the network, as sparse codewords can be detected within multiplexed codewords in accordance with message passing algorithms (MPAs).
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: September 8, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Hosein Nikopour, Mohammadhadi Baligh
  • Publication number: 20200267037
    Abstract: Disclosed are apparatuses for a communication device. An apparatus for a communication device includes control circuitry configured to use circular convolution for pulse shape filtering of a block of data symbols of a single carrier waveform to generate a block-wise single carrier (BWSC) symbol. The apparatus is also configured to insert one of a data-based cyclic prefix or a data-based cyclic postfix into the BWSC symbol one of before the pulse shape filtering or after the pulse shape filtering. An apparatus for a communication device includes control circuitry configured to remove one or more of a cyclic prefix or a cyclic postfix from a received BWSC symbol, and use circular convolution to demodulate the received BWSC symbol.
    Type: Application
    Filed: April 11, 2016
    Publication date: August 20, 2020
    Applicant: INTEL CORPORATION
    Inventor: Hosein Nikopour
  • Publication number: 20200229206
    Abstract: A central trajectory controller including a cell interface configured to establish signaling connections with one or more backhaul moving cells and to establish signaling connections with one or more outer moving cells, an input data repository configured to obtain input data related to a radio environment of the one or more outer moving cells and the one or more backhaul moving cells, and a trajectory processor configured to determine, based on the input data, first coarse trajectories for the one or more backhaul moving cells and second coarse trajectories for the one or more outer moving cells, the cell interface further configured to send the first coarse trajectories to the one or more backhaul moving cells and to send the second coarse trajectories to the one or more outer moving cells.
    Type: Application
    Filed: March 26, 2020
    Publication date: July 16, 2020
    Inventors: Biljana BADIC, Steven A. BOWERS, Yang-Seok CHOI, Miltiadis FILIPPOU, Bertram GUNZELMANN, Nageen HIMAYAT, Ingolf KARLS, Nirlesh Kumar KOSHTA, Rajkumar KRISHNAPERUMAL, Markus Dominik MUECK, Hosein NIKOPOUR, Pradeep C. PANGI, Jerome PARRON, Bernhard RAAF, Sabine ROESSEL, Dario SABELLA, Bernd SCHALLER, Domagoj SIPRAK, Christopher STOBART, Shashanka T R, Sudeep VAMANAN, Zhibin YU, Jing ZHU
  • Patent number: 10701641
    Abstract: Aspects for interference mitigation in ultra-dense networks are described.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: June 30, 2020
    Assignee: Apple Inc.
    Inventors: Navid Naderializadeh, Hosein Nikopour, Shilpa Talwar, Oner Orhan, Bahareh Sadeghi, Carlos Cordeiro, Hassnaa Moustafa
  • Patent number: 10700803
    Abstract: A method for data transmission by a device in a communication system includes modulating a first data stream using a codebook to produce a second data stream, wherein the codebook is in correspondence with a multi-dimensional modulation map that includes a number of distinct projections per complex dimension that is smaller than a number of modulation points of the multi-dimensional modulation map, and transmitting the second data stream over allocated resources in the communication system.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: June 30, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Mahmoud Taherzadeh Boroujeni, Alireza Bayesteh, Hosein Nikopour, Mohammadhadi Baligh