Patents by Inventor Hotaka Maruyama

Hotaka Maruyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8305109
    Abstract: An object is to obtain a desired threshold voltage of a thin film transistor using an oxide semiconductor. Another object is to suppress a change of the threshold voltage over time. Specifically, an object is to apply the thin film transistor to a logic circuit formed using a transistor having a desired threshold voltage. In order to achieve the above object, thin film transistors including oxide semiconductor layers with different thicknesses may be formed over the same substrate, and the thin film transistors whose threshold voltages are controlled by the thicknesses of the oxide semiconductor layers may be used to form a logic circuit. In addition, by using an oxide semiconductor film in contact with an oxide insulating film formed after dehydration or dehydrogenation treatment, a change in threshold voltage over time is suppressed and the reliability of a logic circuit can be improved.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: November 6, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kenichi Okazaki, Yoshiaki Oikawa, Hotaka Maruyama, Hiromichi Godo, Shunpei Yamazaki
  • Publication number: 20120214276
    Abstract: An object is to provide a semiconductor device provided with a thin film transistor having excellent electric characteristics using an oxide semiconductor layer. An In—Sn—O-based oxide semiconductor layer including SiOX is used for a channel formation region. In order to reduce contact resistance between the In—Sn—O-based oxide semiconductor layer including SiOX and a wiring layer formed from a metal material having low electric resistance, a source region or drain region is formed between a source electrode layer or drain electrode layer and the In—Sn—O-based oxide semiconductor layer including SiOX. The source region or drain region and a pixel region are formed using an In—Sn—O-based oxide semiconductor layer which does not include SiOX.
    Type: Application
    Filed: April 25, 2012
    Publication date: August 23, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yoshiaki OIKAWA, Hotaka MARUYAMA, Hiromichi GODO, Daisuke KAWAE, Shunpei YAMAZAKI
  • Patent number: 8174021
    Abstract: An object is to provide a semiconductor device provided with a thin film transistor having excellent electric characteristics using an oxide semiconductor layer. An In—Sn—O-based oxide semiconductor layer including SiOX is used for a channel formation region. In order to reduce contact resistance between the In—Sn—O-based oxide semiconductor layer including SiOX and a wiring layer formed from a metal material having low electric resistance, a source region or drain region is formed between a source electrode layer or drain electrode layer and the In—Sn—O-based oxide semiconductor layer including SiOX. The source region or drain region and a pixel region are formed using an In—Sn—O-based oxide semiconductor layer which does not include SiOX.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: May 8, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiaki Oikawa, Hotaka Maruyama, Hiromichi Godo, Daisuke Kawae, Shunpei Yamazaki
  • Publication number: 20110272699
    Abstract: A gate electrode is formed by forming a first conductive layer containing aluminum as its main component over a substrate, forming a second conductive layer made from a material different from that used for forming the first conductive layer over the first conductive layer; and patterning the first conductive layer and the second conductive layer. Further, the first conductive layer includes one or more selected from carbon, chromium, tantalum, tungsten, molybdenum, titanium, silicon, and nickel. And the second conductive layer includes one or more selected from chromium, tantalum, tungsten, molybdenum, titanium, silicon, and nickel, or nitride of these materials.
    Type: Application
    Filed: July 19, 2011
    Publication date: November 10, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kengo AKIMOTO, Hotaka MARUYAMA
  • Patent number: 8035077
    Abstract: A semiconductor device is manufactured through steps in which a photoelectric conversion element and an amplifier circuit are formed over a first substrate with a release layer interposed therebetween, and the photoelectric conversion element and the amplifier circuit are separated from the first substrate. Output characteristics of the amplifier circuit are improved and the semiconductor device with high reliability is obtained.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: October 11, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Atsushi Hirose, Koji Ono, Hotaka Maruyama
  • Publication number: 20110210355
    Abstract: An object is to improve reliability of a light-emitting device. A light-emitting device has a driver circuit portion including a transistor for a driver circuit and a pixel portion including a transistor for a pixel over one substrate. The transistor for the driver circuit and the transistor for the pixel are inverted staggered transistors each including an oxide semiconductor layer in contact with part of an oxide insulating layer. In the pixel portion, a color filter layer and a light-emitting element are provided over the oxide insulating layer. In the transistor for the driver circuit, a conductive layer overlapping with a gate electrode layer and the oxide semiconductor layer is provided over the oxide insulating layer. The gate electrode layer, a source electrode layer, and a drain electrode layer are formed using metal conductive films.
    Type: Application
    Filed: August 30, 2010
    Publication date: September 1, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Junichiro SAKATA, Masayuki SAKAKURA, Yoshiaki OIKAWA, Kenichi OKAZAKI, Hotaka MARUYAMA
  • Patent number: 8003449
    Abstract: A gate electrode is formed by forming a first conductive layer containing aluminum as its main component over a substrate, forming a second conductive layer made from a material different from that used for forming the first conductive layer over the first conductive layer; and patterning the first conductive layer and the second conductive layer. Further, the first conductive layer includes one or more selected from carbon, chromium, tantalum, tungsten, molybdenum, titanium, silicon, and nickel. And the second conductive layer includes one or more selected from chromium, tantalum, tungsten, molybdenum, titanium, silicon, and nickel, or nitride of these materials.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: August 23, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kengo Akimoto, Hotaka Maruyama
  • Publication number: 20110151618
    Abstract: An oxide semiconductor layer with excellent crystallinity is formed to enable manufacture of transistors with excellent electrical characteristics for practical application of a large display device, a high-performance semiconductor device, etc. By first heat treatment, a first oxide semiconductor layer is crystallized. A second oxide semiconductor layer is formed over the first oxide semiconductor layer. By second heat treatment, an oxide semiconductor layer including a crystal region having the c-axis oriented substantially perpendicular to a surface is efficiently formed and oxygen vacancies are efficiently filled. An oxide insulating layer is formed over and in contact with the oxide semiconductor layer. By third heat treatment, oxygen is supplied again to the oxide semiconductor layer. A nitride insulating layer containing hydrogen is formed over the oxide insulating layer.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 23, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Hotaka MARUYAMA, Yoshiaki OIKAWA, Katsuaki TOCHIBAYASHI
  • Publication number: 20110062432
    Abstract: An object is to realize low power consumption while manufacturing a semiconductor device including a thin film transistor whose parasitic capacitance is reduced. Part of an insulating layer covering the periphery of a gate electrode layer is formed to be thick. Specifically, a stack including a spacer insulating layer and a gate insulating layer is formed. The thick part of the insulating layer covering the periphery of the gate electrode layer reduces parasitic capacitance formed between the gate electrode layer of the thin film transistor and another electrode layer (another wiring layer) overlapping with the gate electrode layer.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 17, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Masayuki Sakakura, Jun Koyama, Yoshiaki Oikawa, Hotaka Maruyama, Masami Jintyou, Kenichi Okazaki
  • Publication number: 20110062992
    Abstract: An object is to obtain a desired threshold voltage of a thin film transistor using an oxide semiconductor. Another object is to suppress a change of the threshold voltage over time. Specifically, an object is to apply the thin film transistor to a logic circuit formed using a transistor having a desired threshold voltage. In order to achieve the above object, thin film transistors including oxide semiconductor layers with different thicknesses may be formed over the same substrate, and the thin film transistors whose threshold voltages are controlled by the thicknesses of the oxide semiconductor layers may be used to form a logic circuit. In addition, by using an oxide semiconductor film in contact with an oxide insulating film formed after dehydration or dehydrogenation treatment, a change in threshold voltage over time is suppressed and the reliability of a logic circuit can be improved.
    Type: Application
    Filed: September 13, 2010
    Publication date: March 17, 2011
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kenichi OKAZAKI, Yoshiaki OIKAWA, Hotaka MARUYAMA, Hiromichi GODO, Shunpei YAMAZAKI
  • Publication number: 20110062434
    Abstract: An object of the invention is to improve the reliability of a light-emitting device. Another object of the invention is to provide flexibility to a light-emitting device having a thin film transistor using an oxide semiconductor film. A light-emitting device has, over one flexible substrate, a driving circuit portion including a thin film transistor for a driving circuit and a pixel portion including a thin film transistor for a pixel. The thin film transistor for a driving circuit and the thin film transistor for a pixel are inverted staggered thin film transistors including an oxide semiconductor layer which is in contact with a part of an oxide insulating layer.
    Type: Application
    Filed: September 13, 2010
    Publication date: March 17, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shingo EGUCHI, Yoshiaki OIKAWA, Kenichi OKAZAKI, Hotaka MARUYAMA
  • Publication number: 20110057188
    Abstract: It is an object to manufacture a highly reliable semiconductor device including a thin film transistor whose electric characteristics are stable. An insulating layer which covers an oxide semiconductor layer of the thin film transistor contains a boron element or an aluminum element. The insulating layer containing a boron element or an aluminum element is formed by a sputtering method using a silicon target or a silicon oxide target containing a boron element or an aluminum element. Alternatively, an insulating layer containing an antimony (Sb) element or a phosphorus (P) element instead of a boron element covers the oxide semiconductor layer of the thin film transistor.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 10, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Junichiro Sakata, Kosei Noda, Masayuki Sakakura, Yoshiaki Oikawa, Hotaka Maruyama
  • Publication number: 20110038528
    Abstract: A manufacturing method of a semiconductor device capable of efficiently inspecting whether a metal silicide layer is sufficiently formed is provided. The manufacturing method is provided with the steps of forming a metal layer over a semiconductor layer containing silicon; forming a metal silicide layer over a surface of the semiconductor layer by heating the semiconductor layer and the metal layer; generating image data by performing color imaging of the metal silicide layer from above the metal silicide layer; calculating saturation of the metal silicide layer by processing the image data; and judging the formation amount of the metal silicide layer on the basis of the calculated saturation.
    Type: Application
    Filed: October 27, 2010
    Publication date: February 17, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hotaka Maruyama, Masumi Mitsubori, Kaoru Kato
  • Publication number: 20110032444
    Abstract: An object is to improve reliability of a semiconductor device. A semiconductor device including a driver circuit portion and a display portion (also referred to as a pixel portion) over the same substrate is provided. The driver circuit portion and the display portion include thin film transistors in which a semiconductor layer includes an oxide semiconductor; a first wiring; and a second wiring. The thin film transistors each include a source electrode layer and a drain electrode layer. In the thin film transistor in the driver circuit portion, the semiconductor layer is sandwiched between a gate electrode layer and a conductive layer. The first wiring and the second wiring are electrically connected to each other in an opening provided in a gate insulating film through an oxide conductive layer.
    Type: Application
    Filed: August 2, 2010
    Publication date: February 10, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Junichiro SAKATA, Masayuki SAKAKURA, Yoshiaki OIKAWA, Kenichi OKAZAKI, Hotaka MARUYAMA, Masashi TSUBUKU
  • Publication number: 20110031493
    Abstract: An object is to improve reliability of a semiconductor device. A semiconductor device including a driver circuit portion and a display portion (also referred to as a pixel portion) over the same substrate is provided. The driver circuit portion and the display portion include thin film transistors in which a semiconductor layer includes an oxide semiconductor; a first wiring; and a second wiring. The thin film transistors each include a source electrode layer and a drain electrode layer which each have a shape whose end portions are located on an inner side than end portions of the semiconductor layer. In the thin film transistor in the driver circuit portion, the semiconductor layer is provided between a gate electrode layer and a conductive layer. The first wiring and the second wiring are electrically connected in an opening provided in a gate insulating layer through an oxide conductive layer.
    Type: Application
    Filed: August 2, 2010
    Publication date: February 10, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Junichiro SAKATA, Masayuki SAKAKURA, Yoshiaki OIKAWA, Kenichi OKAZAKI, Hotaka MARUYAMA
  • Publication number: 20110003429
    Abstract: Disclosed is a method to manufacture a thin film transistor having an oxide semiconductor as a channel formation region. The method includes; forming an oxide semiconductor layer over a gate insulating layer; forming a source and drain electrode layers over and in contact with the oxide semiconductor layer so that at least portion of the oxide semiconductor layer is exposed; and forming an oxide insulating film over and in contact with the oxide semiconductor layer. The exposed portion of the oxide semiconductor may be exposed to a gas containing oxygen in the presence of plasma before the formation of the oxide insulating film. The method allows oxygen to be diffused into the oxide semiconductor layer, which contributes to the excellent characteristics of the thin film transistor.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 6, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yoshiaki OIKAWA, Kenichi OKAZAKI, Hotaka MARUYAMA
  • Patent number: 7842520
    Abstract: A manufacturing method of a semiconductor device capable of efficiently inspecting whether a metal silicide layer is sufficiently formed is provided. The manufacturing method is provided with the steps of forming a metal layer over a semiconductor layer containing silicon; forming a metal silicide layer over a surface of the semiconductor layer by heating the semiconductor layer and the metal layer; generating image data by performing color imaging of the metal silicide layer from above the metal silicide layer; calculating saturation of the metal silicide layer by processing the image data; and judging the formation amount of the metal silicide layer on the basis of the calculated saturation.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: November 30, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hotaka Maruyama, Masumi Mitsubori, Kaoru Kato
  • Publication number: 20100282947
    Abstract: A semiconductor device is manufactured through steps in which a photoelectric conversion element and an amplifier circuit are formed over a first substrate with a release layer interposed therebetween, and the photoelectric conversion element and the amplifier circuit are separated from the first substrate. Output characteristics of the amplifier circuit are improved and the semiconductor device with high reliability is obtained.
    Type: Application
    Filed: July 14, 2010
    Publication date: November 11, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Atsushi Hirose, Koji Ono, Hotaka Maruyama
  • Publication number: 20100200851
    Abstract: An object is to provide a semiconductor device provided with a thin film transistor having excellent electric characteristics using an oxide semiconductor layer. An In—Sn—O-based oxide semiconductor layer including SiOX is used for a channel formation region. In order to reduce contact resistance between the In—Sn—O-based oxide semiconductor layer including SiOX and a wiring layer formed from a metal material having low electric resistance, a source region or drain region is formed between a source electrode layer or drain electrode layer and the In—Sn—O-based oxide semiconductor layer including SiOX. The source region or drain region and a pixel region are formed using an In—Sn—O-based oxide semiconductor layer which does not include SiOX.
    Type: Application
    Filed: January 28, 2010
    Publication date: August 12, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yoshiaki OIKAWA, Hotaka MARUYAMA, Hiromichi GODO, Daisuke KAWAE, Shunpei YAMAZAKI
  • Patent number: 7759629
    Abstract: A semiconductor device is manufactured through steps in which a photoelectric conversion element and an amplifier circuit are formed over a first substrate with a release layer interposed therebetween, and the photoelectric conversion element and the amplifier circuit are separated from the first substrate. Output characteristics of the amplifier circuit are improved and the semiconductor device with high reliability is obtained.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: July 20, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Atsushi Hirose, Koji Ono, Hotaka Maruyama