Patents by Inventor Howard Grunes

Howard Grunes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7422637
    Abstract: An apparatus and method for performing uniform gas flow in a processing chamber is provided. In one embodiment, an apparatus is an edge ring that includes an annular body having an annular seal projecting therefrom is provided. The seal is coupled to a side of the annular body opposite a side adapted to seat on the substrate support. In another embodiment, a processing system is provided that includes a chamber body, a lid, a substrate support and a plurality of flow control orifices. The lid is disposed on the chamber body and defining an interior volume therewith. The substrate support is disposed in the interior volume and at least partially defines a processing region with the lid. The flow control orifices are disposed between the substrate support and the lid. The flow control orifices are adapted to control flow of gases exiting the processing region.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: September 9, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Vincent Ku, Ling Chen, Howard Grunes, Hua Chung
  • Publication number: 20070044719
    Abstract: An apparatus and method for performing uniform gas flow in a processing chamber is provided. In one embodiment, an apparatus is an edge ring that includes an annular body having an annular seal projecting therefrom is provided. The seal is coupled to a side of the annular body opposite a side adapted to seat on the substrate support. In another embodiment, a processing system is provided that includes a chamber body, a lid, a substrate support and a plurality of flow control orifices. The lid is disposed on the chamber body and defining an interior volume therewith. The substrate support is disposed in the interior volume and at least partially defines a processing region with the lid. The flow control orifices are disposed between the substrate support and the lid. The flow control orifices are adapted to control flow of gases exiting the processing region.
    Type: Application
    Filed: October 25, 2006
    Publication date: March 1, 2007
    Inventors: Vincent Ku, Ling Chen, Howard Grunes, Hua Chung
  • Publication number: 20060070875
    Abstract: A sputtering coil for a plasma chamber in a semiconductor fabrication system is provided. The sputtering coil couples energy into a plasma and also provides a source of sputtering material to be sputtered onto a workpiece from the coil to supplement material being sputtered from a target onto the workpiece. Alternatively a plurality of coils may be provided, one primarily for coupling energy into the plasma and the other primarily for providing a supplemental source of sputtering material to be sputtered on the workpiece.
    Type: Application
    Filed: September 15, 2005
    Publication date: April 6, 2006
    Inventors: Jaim Nulman, Sergio Edelstein, Mani Subramani, Zheng Xu, Howard Grunes, Avi Tepman, John Forster, Praburam Gopalraja
  • Publication number: 20050199489
    Abstract: An apparatus and a method of depositing a catalytic layer comprising at least one metal selected from the group consisting of noble metals, semi-noble metals, alloys thereof, and combinations thereof in sub-micron features formed on a substrate. Examples of noble metals include palladium and platinum. Examples of semi-noble metals include cobalt, nickel, and tungsten. The catalytic layer may be deposited by electroless deposition, electroplating, or chemical vapor deposition. In one embodiment, the catalytic layer may be deposited in the feature to act as a barrier layer to a subsequently deposited conductive material. In another embodiment, the catalytic layer may be deposited over a barrier layer. In yet another embodiment, the catalytic layer may be deposited over a seed layer deposited over the barrier layer to act as a “patch” of any discontinuities in the seed layer. Once the catalytic layer has been deposited, a conductive material, such as copper, may be deposited over the catalytic layer.
    Type: Application
    Filed: March 25, 2005
    Publication date: September 15, 2005
    Inventors: Joseph Stevens, Dmitry Lubomirsky, Ian Pancham, Donald Olgado, Howard Grunes, Yeuk-Fai Mok
  • Publication number: 20050173239
    Abstract: Plasma etching or resputtering of a layer of sputtered materials including opaque metal conductor materials may be controlled in a sputter reactor system. In one embodiment, resputtering of a sputter deposited layer is performed after material has been sputtered deposited and while additional material is being sputter deposited onto a substrate. A path positioned within a chamber of the system directs light or other radiation emitted by the plasma to a chamber window or other optical view-port which is protected by a shield against deposition by the conductor material. In one embodiment, the radiation path is folded to reflect plasma light around the chamber shield and through the window to a detector positioned outside the chamber window.
    Type: Application
    Filed: September 11, 2003
    Publication date: August 11, 2005
    Inventors: Sasson Somekh, Marc Schweitzer, John Forster, Zheng Xu, Roderick Mosely, Barry Chin, Howard Grunes
  • Publication number: 20040256217
    Abstract: A sputtering coil for a plasma chamber in a semiconductor fabrication system is provided. The sputtering coil couples energy into a plasma and also provides a source of sputtering material to be sputtered onto a workpiece from the coil to supplement material being sputtered from a target onto the workpiece. Alternatively a plurality of coils may be provided, one primarily for coupling energy into the plasma and the other primarily for providing a supplemental source of sputtering material to be sputtered on the workpiece.
    Type: Application
    Filed: July 20, 2004
    Publication date: December 23, 2004
    Inventors: Jaim Nulman, Sergio Edelstein, Mani Subramani, Zheng Xu, Howard Grunes, Avi Tepman, John Forster, Praburam Gopalraja
  • Patent number: 6799939
    Abstract: A robot assembly including multiple independently operable robot assemblies are provided for use in semiconductor wafer processing. The robot assembly includes independent co-axial upper and lower robot assemblies adapted to handle multiple objects. The upper robot is stacked above the lower robot and the two robots are mounted concentrically to allow fast wafer transfer. Concentric drive mechanisms may also be provided for imparting rotary motion to either rotate the robot assembly or extend an extendable arm assembly into an adjacent chamber. Each robot can be either a single blade robot or a dual blade robot. Also provided is an apparatus for processing semiconductor wafers comprising a pre/post process transfer chamber housing multiple independent robot assemblies and surrounded by a plurality of pre-process chambers and post process chambers. Within each process, pre-process and post-process chamber is an apparatus for holding a plurality of stacked wafers.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: October 5, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Robert B. Lowrance, Howard Grunes
  • Patent number: 6783639
    Abstract: A sputtering coil for a plasma chamber in a semiconductor fabrication system is provided. The sputtering coil couples energy into a plasma and also provides a source of sputtering material to be sputtered onto a workpiece from the coil to supplement material being sputtered from a target onto the workpiece. Alternatively a plurality of coils may be provided, one primarily for coupling energy into the plasma and the other primarily for providing a supplemental source of sputtering material to be sputtered on the workpiece.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: August 31, 2004
    Assignee: Applied Materials
    Inventors: Jaim Nulman, Sergio Edelstein, Mani Subramani, Zheng Xu, Howard Grunes, Avi Tepman, John Forster, Praburam Gopalraja
  • Publication number: 20040069227
    Abstract: An apparatus and method for performing uniform gas flow in a processing chamber is provided. In one embodiment, an apparatus is an edge ring that includes an annular body having an annular seal projecting therefrom is provided. The seal is coupled to a side of the annular body opposite a side adapted to seat on the substrate support. In another embodiment, a processing system is provided that includes a chamber body, a lid, a substrate support and a plurality of flow control orifices. The lid is disposed on the chamber body and defining an interior volume therewith. The substrate support is disposed in the interior volume and at least partially defines a processing region with the lid. The flow control orifices are disposed between the substrate support and the lid. The flow control orifices are adapted to control flow of gases exiting the processing region.
    Type: Application
    Filed: October 9, 2002
    Publication date: April 15, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Vincent Ku, Ling Chen, Howard Grunes, Hua Chung
  • Publication number: 20040005211
    Abstract: A controlled robot assembly system including multiple independently operable robot assemblies are provided for use in semiconductor wafer processing. The robot assembly includes independent co-axial upper and lower robot assemblies adapted to handle multiple objects and a control system for high system throughput. The upper robot is stacked above the lower robot and the two robots are mounted concentrically to allow fast wafer transfer. Concentric drive mechanisms may also be provided for imparting rotary motion to either rotate the robot assembly or extend an extendable arm assembly into an adjacent chamber. The apparatus includes a wafer lifting and storing apparatus within each chamber.
    Type: Application
    Filed: January 31, 2002
    Publication date: January 8, 2004
    Inventors: Robert B. Lowrance, Howard Grunes
  • Publication number: 20030180139
    Abstract: A robot assembly including multiple independently operable robot assemblies are provided for use in semiconductor wafer processing. The robot assembly includes independent co-axial upper and lower robot assemblies adapted to handle multiple objects. The upper robot is stacked above the lower robot and the two robots are mounted concentrically to allow fast wafer transfer. Concentric drive mechanisms may also be provided for imparting rotary motion to either rotate the robot assembly or extend an extendable arm assembly into an adjacent chamber. Each robot can be either a single blade robot or a dual blade robot. Also provided is an apparatus for processing semiconductor wafers comprising a pre/post process transfer chamber housing multiple independent robot assemblies and surrounded by a plurality of pre-process chambers and post process chambers. Within each process, pre-process and post-process chamber is an apparatus for holding a plurality of stacked wafers.
    Type: Application
    Filed: March 5, 2003
    Publication date: September 25, 2003
    Inventors: William McClintock, Robert B. Lowrance, Howard Grunes
  • Publication number: 20020144901
    Abstract: A sputtering coil for a plasma chamber in a semiconductor fabrication system is provided. The sputtering coil couples energy into a plasma and also provides a source of sputtering material to be sputtered onto a workpiece from the coil to supplement material being sputtered from a target onto the workpiece. Alternatively a plurality of coils may be provided, one primarily for coupling energy into the plasma and the other primarily for providing a supplemental source of sputtering material to be sputtered on the workpiece.
    Type: Application
    Filed: January 17, 2002
    Publication date: October 10, 2002
    Inventors: Jaim Nulman, Sergio Edelstein, Mani Subramani, Zheng Xu, Howard Grunes, Avi Tepman, John Forster, Praburam Gopalraja
  • Publication number: 20020127091
    Abstract: A robot assembly including multiple independently operable robot assemblies are provided for use in semiconductor wafer processing. The robot assembly includes independent co-axial upper and lower robot assemblies adapted to handle multiple objects. The upper robot is stacked above the lower robot and the two robots are mounted concentrically to allow fast wafer transfer. Concentric drive mechanisms may also be provided for imparting rotary motion to either rotate the robot assembly or extend an extendable arm assembly into an adjacent chamber. Each robot can be either a single blade robot or a dual blade robot. Also provided is an apparatus for processing semiconductor wafers comprising a pre/post process transfer chamber housing multiple independent robot assemblies and surrounded by a plurality of pre-process chambers and post process chambers.
    Type: Application
    Filed: October 23, 2001
    Publication date: September 12, 2002
    Inventors: Robert B. Lowrance, Howard Grunes
  • Patent number: 6368469
    Abstract: A sputtering coil for a plasma chamber in a semiconductor fabrication system is provided. The sputtering coil couples energy into a plasma and also provides a source of sputtering material to be sputtered onto a workpiece from the coil to supplement material being sputtered from a target onto the workpiece. Alternatively a plurality of coils may be provided, one primarily for coupling energy into the plasma and the other primarily for providing a supplemental source of sputtering material to be sputtered on the workpiece.
    Type: Grant
    Filed: May 6, 1997
    Date of Patent: April 9, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Jaim Nulman, Sergio Edelstein, Mani Subramani, Zheng Xu, Howard Grunes, Avi Tepman, John Forster, Praburam Gopalraja
  • Publication number: 20020029936
    Abstract: A robot assembly including multiple independently operable robot assemblies are provided for use in semiconductor wafer processing. The robot assembly includes independent co-axial upper and lower robot assemblies adapted to handle multiple objects. The upper robot is stacked above the lower robot and the two robots are mounted concentrically to allow fast wafer transfer. Concentric drive mechanisms may also be provided for imparting rotary motion to either rotate the robot assembly or extend an extendable arm assembly into an adjacent chamber. Each robot can be either a single blade robot or a dual blade robot. Also provided is an apparatus for processing semiconductor wafers comprising a pre/post process transfer chamber housing multiple independent robot assemblies and surrounded by a plurality of pre-process chambers and post process chambers. Within each process, pre-process and post-process chamber is an apparatus for holding a plurality of stacked wafers.
    Type: Application
    Filed: July 17, 2001
    Publication date: March 14, 2002
    Inventors: William McClintock, Robert B. Lowrance, Howard Grunes
  • Publication number: 20010019016
    Abstract: A recessed coil for a plasma chamber in a semiconductor fabrication system is provided. Recessing the coil reduces deposition of material onto the coil which in turn leads to a reduction in particulate matter shed by the coil onto the workpiece.
    Type: Application
    Filed: April 10, 2001
    Publication date: September 6, 2001
    Inventors: Anantha Subramani, John C. Forster, Bradley O. Stimson, Sergio Edelstein, Howard Grunes, Avi Tepman, Zheng Xu
  • Patent number: 6254746
    Abstract: A recessed coil for a plasma chamber in a semiconductor fabrication system is provided. Recessing the coil reduces deposition of material onto the coil which in turn leads to a reduction in particulate matter shed by the coil onto the workpiece.
    Type: Grant
    Filed: May 8, 1997
    Date of Patent: July 3, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Anantha Subramani, John C. Forster, Bradley O. Stimson, Sergio Edelstein, Howard Grunes, Avi Tepman, Zheng Xu
  • Patent number: 6102164
    Abstract: A robot assembly including multiple independently operable robot assemblies are provided for use in semiconductor wafer processing. The robot assembly includes independent co-axial upper and lower robot assemblies adapted to handle multiple objects. The upper robot is stacked above the lower robot and the two robots are mounted concentrically to allow fast wafer transfer. Concentric drive mechanisms may also be provided for imparting rotary motion to either rotate the robot assembly or extend an extendable arm assembly into an adjacent chamber. Each robot can be either a single blade robot or a dual blade robot. Also provided is an apparatus for processing semiconductor wafers comprising a pre/post process transfer chamber housing multiple independent robot assemblies and surrounded by a plurality of pre-process chambers and post process chambers. Within each process, pre-process and post-process chamber is an apparatus for holding a plurality of stacked wafers.
    Type: Grant
    Filed: February 28, 1996
    Date of Patent: August 15, 2000
    Assignee: Applied Materials, Inc.
    Inventors: William McClintock, Robert B. Lowrance, Howard Grunes
  • Patent number: 5879127
    Abstract: A robot assembly, including a central hub, has two arms arranged for independent rotation about the hub. Two carriers, oriented 180.degree. apart from each other, are coupled to an end of each of the arms. A drive is provided for rotating the arms in opposite directions to extend one or the other of said carriers radially from said central hub, and for rotating the arms in the same direction to effect rotation of the carriers.
    Type: Grant
    Filed: April 22, 1997
    Date of Patent: March 9, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Howard Grunes, Robert B. Lowrance, Avi Tepman
  • Patent number: 5868847
    Abstract: A chamber for depositing a film layer on a substrate includes a support member on which the substrate is positioned for processing in the chamber, and a clamp ring suspended in the chamber on a chamber shield. The support member is positionable in the chamber to receive a substrate thereon, and further positionable to pass the substrate through the shield and thereby lift the clamp ring off the shield. After deposition is complete, the support member retracts through the shield, to reposition the clamp on the shield. In the event that a deposition material layer has formed between the substrate and the clamp ring, the clamp ring includes a plurality of actuators thereon which force the substrate out of the clamp ring as the clamp ring is repositioned on the shield.
    Type: Grant
    Filed: December 16, 1994
    Date of Patent: February 9, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Aihua Chen, Zheng Xu, Howard Grunes, Avi Tepman, Igor Kogan