Patents by Inventor Hsiang-an Feng

Hsiang-an Feng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240131819
    Abstract: A thermally conductive board includes a first metal layer, a second metal layer, and a thermally conductive layer. The material of the first metal layer includes copper, and the first metal layer has a first top surface and a first bottom surface opposite to the first top surface. A first metal coating layer covers the first bottom surface. The material of the second metal layer includes copper, and the second metal layer has a second top surface and a second bottom surface opposite to the second top surface. A second metal coating layer covers the second top surface and faces the first metal coating layer. The thermally conductive layer is an electrically insulator laminated between the first metal coating layer and the second metal coating layer.
    Type: Application
    Filed: May 3, 2023
    Publication date: April 25, 2024
    Inventors: KAI-WEI LO, WEN-FENG LEE, HSIANG-YUN YANG, KUO-HSUN CHEN
  • Patent number: 11950432
    Abstract: A semiconductor package includes a first semiconductor device and a second semiconductor device. The first semiconductor device includes a first semiconductor substrate, a first bonding structure and a memory cell. The second semiconductor device is stacked over the first semiconductor device. The second semiconductor device includes a second semiconductor substrate, a second bonding structure in a second dielectric layer and a peripheral circuit between the second semiconductor substrate and the second bonding structure. The first bonding structure and the second bonding structure are bonded and disposed between the memory cell and the peripheral circuit, and the memory cell and the peripheral circuit are electrically connected through the first bonding structure and the second bonding structure.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiang-Ku Shen, Ku-Feng Lin, Liang-Wei Wang, Dian-Hau Chen
  • Patent number: 11942342
    Abstract: A conveying unit includes a housing; a collision prevention mechanism disposed on a sidewall of the housing; a gripping member configured to hold a carrier for carrying a semiconductor structure; a sensor disposed on the gripping member and configured to measure and collect data associated with vibration of the gripping member; and an unit controller disposed on the gripping member and configured to analyze the data from the sensor and control a movement of the conveying unit.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Fu-Hsien Li, Chi-Feng Tung, Hsiang Yin Shen
  • Patent number: 11940551
    Abstract: A radar detector including a radar transmitting device, a radar receiving device, an analog-to-digital converter (ADC), and a digital processing unit, and an interference suppression method using the radar detector are provided. The radar transmitting device transmits a first wireless signal. The radar receiving device receives a second wireless signal to generate an analog reference signal in response to the first wireless signal is subdued from being transmitted, and receives a third wireless signal to generate an analog main signal in response to the first wireless signal is not subdued from being transmitted. The ADC generates a digital reference signal according to the analog reference signal, and generates a digital main signal according to the analog main signal. The digital processing unit adjusts the digital or analog main signal according to the digital reference signal to correspondingly suppress interference components in the digital main signal or in the analog main signal.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: March 26, 2024
    Assignee: RichWave Technology Corp.
    Inventor: Hsiang-Feng Chi
  • Publication number: 20240096297
    Abstract: In some examples, a controller of a wearable device causes display by the wearable device of a test image, and adjusts a color property of the displayed test image. In response to an input provided by a user responsive to the displayed test image as the color property is adjusted, the controller determines a distribution of color wavelengths for an eye of the user, and detects a color vision deficiency of the user based on the determined distribution of color wavelengths. The controller provides control information to control a display device of the wearable device to compensate for the color vision deficiency.
    Type: Application
    Filed: September 15, 2022
    Publication date: March 21, 2024
    Inventors: Hsiang-Ta Ke, Yu-Ren Chen, Chun-Feng Li
  • Publication number: 20240087934
    Abstract: A method for operating a conveying system is provided. An overhead hoist transport (OHT) vehicle is provided, wherein the OHT vehicle includes a gripping member configured to grip and hold a carrier, and a receiver configured to receive a signal. The signal is transmitted to the receiver of the OHT vehicle. The OHT vehicle is moved toward the carrier, and the carrier is gripped by the gripping member of the OHT vehicle. A lifting force is determined based on a weight of a carrier, a number of workpieces in the carrier, or a vertical distance between the OHT vehicle and the carrier, and the lifting force is applied to the carrier.
    Type: Application
    Filed: November 23, 2023
    Publication date: March 14, 2024
    Inventors: YONG-JYU LIN, FU-HSIEN LI, CHEN-WEI LU, CHI-FENG TUNG, HSIANG YIN SHEN
  • Publication number: 20240071872
    Abstract: A via-filling method of a TGV substrate includes steps: filling a plurality of metal balls into a plurality of vias of the TGV substrate; using a heating process to melt the plurality of metal balls to form a liquid-state metal; and cooling down the liquid-state metal to form a solid-state metal inside the plurality of vias. Because the method needn't use solvents or fluxes, the solid-state metal inside the plurality of vias have better electric conductivity.
    Type: Application
    Filed: February 7, 2023
    Publication date: February 29, 2024
    Applicant: Ingentec Corporation
    Inventors: Hsiao Lu Chen, AI SEN LIU, HSIANG AN FENG, YA LI CHEN
  • Publication number: 20240072013
    Abstract: A vertical light emitting diode die packaging method is provided, including a plurality of following steps. At first, a plurality of drill hole is formed in a substrate and a first metal material is used to fill the drill holes. Next, disposing and fixing a plurality of vertical light emitting diode die on the substrate through a second metal material, and a transparent glue is used to cover thereon. A laser process is then employed to dissolve the transparent glue for forming ditches. And, a conductive liquid is applied to fill the ditches and an insulating glue is provided to embrace and encapsulate the vertical light emitting diode dies. By employing the packaging method of the present invention, the current external wire bonding process can be effectively replaced, thereby die size miniaturization as well as packaging yield of the vertical light emitting diode dies are believed to be optimized.
    Type: Application
    Filed: February 7, 2023
    Publication date: February 29, 2024
    Applicant: Ingentec Corporation
    Inventors: HSIAO LU CHEN, AI SEN LIU, HSIANG AN FENG
  • Publication number: 20240072033
    Abstract: A bonding and transferring method for die package structures is provided, including providing a die package structure which has a positioning adhesive disposed thereon, and providing a vibration base having at least one cavity corresponding to the positioning adhesive. By alignment of the positioning adhesive and the cavity, the die package structure can be positioned into the vibration base. A target substrate is further provided and bonded with the vibration base having the die package structure disposed thereon through a metal material. And a laser process is then performed to melt the metal material. At last, the vibration base and the positioning adhesive are removed so the die package structure is successfully bonded and transferred onto the target substrate. By employing the proposed process method of the present invention, rapid mass transfer result is accomplished, and the packaging yield of vertical light emitting diode die package structures is optimized.
    Type: Application
    Filed: February 7, 2023
    Publication date: February 29, 2024
    Applicant: Ingentec Corporation
    Inventors: Hsiao Lu Chen, AI SEN LIU, HSIANG AN FENG, YA LI CHEN
  • Publication number: 20240071799
    Abstract: A system for a semiconductor fabrication facility comprises a transporting tool configured to move a carrier, a first manufacturing tool configured to accept the carrier facing in a first direction, a second manufacturing tool configured to accept the carrier facing in the second direction, and an orientation tool. The carrier is moved to the orientation tool by the transporting tool prior to being moved to the first manufacturing tool or the second manufacturing tool by the transporting tool. The orientation tool rotates the carrier so that the carrier is accepted by the first manufacturing tool or the second manufacturing tool. The transporting tool, the first manufacturing tool, the second manufacturing tool and the orientation tool are physically separated from each other.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Inventors: CHUAN WEI LIN, FU-HSIEN LI, YONG-JYU LIN, RONG-SHEN CHEN, CHI-FENG TUNG, HSIANG YIN SHEN
  • Patent number: 11860266
    Abstract: A method of detecting a life includes receiving an echo signal including an in-phase component and a quadrature component, performing a preprocessing procedure on the echo signal to generate a preprocessed signal, generating, according to the preprocessed signal, complex conjugate data associated with the in-phase component and the quadrature component, performing a first time-domain-to-frequency-domain transform on the complex conjugate data to generate Doppler spectrogram data comprising a plurality of positive velocity energies and a plurality of negative velocity energies, generating combined Doppler spectrogram data according to the plurality of positive velocity energies and the plurality of negative velocity energies, performing a second time time-domain-to-frequency-domain transform on the combined Doppler spectrogram data to generate spectrum data, and determining whether a life is detected according to the spectrum data.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: January 2, 2024
    Assignee: RichWave Technology Corp.
    Inventors: Keng-Hao Liu, Han-Jieh Chang, Hsiang-Feng Chi
  • Publication number: 20230369296
    Abstract: A magnetic LED die transferring device includes a substrate, a plurality of magnetic members and a vibrating mechanism. The substrate includes a plurality of die locating areas arranged in intervals, and each of the die locating areas includes a locating surface. Each of the magnetic members corresponds to each of the die locating areas and includes an alignment N-pole and an alignment S-pole. The vibrating mechanism is coupled to the substrate. The N-pole and the S-pole of each of the magnetic LED dice are used to be attracted by each of the alignment N-poles and each of the alignment S-poles, respectively, to allow each of the magnetic LED dice to be transferred and aligned to each of the die locating areas.
    Type: Application
    Filed: March 26, 2023
    Publication date: November 16, 2023
    Inventors: Ai-Sen LIU, Hsiao-Lu CHEN, Yi-Chuan HUANG, Hsiang-An FENG
  • Patent number: 11791439
    Abstract: A magnetic light-emitting structure and fabrication method for manufacturing a magnetic light-emitting element are provided. The fabrication method comprises providing a magnetic metal composite substrate, wherein a second metal layer is respectively disposed on an upper and lower surface of a first metal layer; forming a connecting metal layer, an epitaxial layer and a plurality of electrode unit on top; and performing a complex process, which removes the second metal layer on the lower surface of the first metal layer and part of the first metal layer and performs cutting according to the number of the electrode unit, so as to form a plurality of epitaxial die. Each epitaxial die corresponds to an electrode unit to form a magnetic light-emitting element. The proposed method improves soft magnetic properties of an original substrate and enables dies to reverse spontaneously, thereby used perfectly for industrial mass transfer technology.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: October 17, 2023
    Assignee: Ingentec Corporation
    Inventors: Hsiang-An Feng, Chia-Wei Tu, Cheng-Yu Chung, Ya-Li Chen
  • Patent number: 11783765
    Abstract: A light emitting diode (LED) driver circuit is configured to drive plural LEDs which are respectively coupled to m scan-lines and n data-lines, wherein m and n are both integers greater than or equal to one. During a driving stage, each of the LEDs is controlled to emit light according to the electrical characteristics on the corresponding scan-line and on the corresponding data-line where the LED is coupled to. The LED driver circuit includes: a power saving control circuit which includes a storage capacitor; a pre-discharging circuit configured to pre-discharge the charges on the m scan-lines to the storage capacitor during a pre-discharging stage; and a pre-charging circuit configured to pre-charge the n data-lines by the charges stored in the storage capacitor during a pre-charging stage.
    Type: Grant
    Filed: March 2, 2023
    Date of Patent: October 10, 2023
    Inventors: Chia-Jung Chang, Shao-Ming Chang, Hsiang-Feng Yu, Tso-Yu Wu, Yu-Pin Tseng
  • Patent number: 11769861
    Abstract: A light-emitting diode packaging structure and a method for fabricating the same is disclosed. A semiconductor wafer is provided, which includes semiconductor substrates. Each semiconductor substrate is penetrated with a first through hole and three second through holes. An insulation layer is formed on the surface of each semiconductor substrate and the inner surfaces of the first through hole, the first sub-through hole, and the second sub-through hole. A patterned electrode layer is formed on the top surface of the semiconductor substrate. A conductive material covering the insulation layer is formed in the first through hole and the second through hole and electrically connected to the patterned electrode layer. Three light-emitting diodes are respectively formed in the first sub-through holes of the second through holes of each semiconductor substrate and respectively electrically connected to the conductive material within the second through holes.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: September 26, 2023
    Assignee: Ingentec Corporation
    Inventors: Ai Sen Liu, Hsiang An Feng, Cheng Yu Chung, Chia Wei Tu, Ya Li Chen
  • Patent number: 11757173
    Abstract: An electronic display device includes a frame assembly, a first antenna, a display module, and a metal grounding member. The frame assembly includes a housing body, and the housing body includes an inner side surface, an outer side surface corresponding to the inner side surface, and a groove running through the outer side surface and the inner side surface. The first antenna is disposed on the inner side surface of the housing body, and the first antenna includes a grounding portion. The display module is disposed on the outer side surface of the housing body. The metal grounding member is disposed on the outer side surface of the housing body, and the metal grounding member is disposed between the housing body and the display module. The metal grounding member is coupled to the grounding portion of the first antenna through the groove.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: September 12, 2023
    Assignee: WISTRON NEWEB CORPORATION
    Inventors: Hung-Wei Lee, Wen-Tsan Chung, Hsiang-Feng Hsieh
  • Publication number: 20230184882
    Abstract: A Doppler radar apparatus including a transmitting device, a receiving device and a narrowband interference suppression device is provided. The transmitting device is configured to transmit a first wireless signal. The receiving device is coupled to the transmitting device and is configured to receive a second wireless signal to generate a first digital signal. The first digital signal includes a Doppler signal component and a narrowband interference signal component, and a bandwidth of the narrowband interference signal component is smaller than a bandwidth of the Doppler signal component. The narrowband interference suppression device is coupled to the receiving device and is configured to perform interference suppression on the first digital signal according to the first wireless signal to suppress the narrowband interference signal component in the first digital signal to generate an output digital signal.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 15, 2023
    Applicant: RichWave Technology Corp.
    Inventor: Hsiang-Feng Chi
  • Publication number: 20230187575
    Abstract: A magnetic light-emitting structure and fabrication method for manufacturing a magnetic light-emitting element are provided. The fabrication method comprises providing a magnetic metal composite substrate, wherein a second metal layer is respectively disposed on an upper and lower surface of a first metal layer; forming a connecting metal layer, an epitaxial layer and a plurality of electrode unit on top; and performing a complex process, which removes the second metal layer on the lower surface of the first metal layer and part of the first metal layer and performs cutting according to the number of the electrode unit, so as to form a plurality of epitaxial die. Each epitaxial die corresponds to an electrode unit to form a magnetic light-emitting element. The proposed method improves soft magnetic properties of an original substrate and enables dies to reverse spontaneously, thereby used perfectly for industrial mass transfer technology.
    Type: Application
    Filed: February 1, 2023
    Publication date: June 15, 2023
    Inventors: HSIANG-AN FENG, CHIA-WEI TU, CHENG-YU CHUNG, YA-LI CHEN
  • Publication number: 20230170434
    Abstract: A method for fabricating a vertical light-emitting diode includes: providing a growth substrate, wherein an epitaxial layer is formed on the growth substrate; forming a metal combined substrate on the epitaxial layer, wherein the metal combined substrate comprises two first metal layers and a second metal layer therebetween, one of the first metal layers is close to the epitaxial layer, and another of the first metal layers is far away from the epitaxial layer; removing the growth substrate; forming a contact metal layer on the epitaxial layer; and removing the second metal layer and the first metal layer far away from the epitaxial layer and leaving the first metal layer close to the epitaxial layer. The vertical light-emitting diode, fabricated by the method, has a thinner thickness, a stronger mechanical strength, a higher light intensity, and a better heat-dissipating effect.
    Type: Application
    Filed: June 28, 2022
    Publication date: June 1, 2023
    Inventors: AI SEN LIU, HSIANG AN FENG, HSIAO LU CHEN, YI CHUAN HUANG
  • Patent number: 11662424
    Abstract: A radar apparatus and a leakage correction method thereof are provided. The radar apparatus includes a transmitter and a receiver. The transmitter includes a sinewave signal generator. The sinewave signal generator generates a sinewave signal. The receiver includes another sinewave signal generator and a correcting circuit. The receiver receives transmitting signals including the sinewave signal from the transmitter. The sinewave signal generator of the receiver generates another sinewave signal according to the amplitude of the transmitting signals or received transmitting signals. The correcting circuit corrects leakage situation on the received transmitting signals according to another sinewave signal. The phasor of sinewave form corresponding to the leakage situation relates to the phasor of another sinewave signal. Accordingly, the performance of receiver may be improved effectively.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: May 30, 2023
    Assignee: RichWave Technology Corp.
    Inventors: Chiang-Hua Yeh, Hsiang-Feng Chi