Patents by Inventor Hsiao-Ling Lu

Hsiao-Ling Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Patent number: 7544305
    Abstract: A shallow trench isolation (STI) multistage chemical mechanical polishing (CMP) method for forming a shallow trench isolation structure is provided. The substrate comprising a dense region and an isolation region, a silicon nitride layer formed over the substrate, a plurality of trenches formed in the silicon nitride layer and the substrate, an oxide layer formed over the substrate, filling the trenches, wherein a width of the trenches in the dense region is smaller than that in the isolation region. A first polishing step is performed to remove a portion of the silicon oxide layer until a thickness of the remaining portion of the oxide layer reaches a predetermined thickness. A second polishing step is performed to remove a portion of the remaining portion of the silicon oxide layer until the silicon nitride layer is exposed.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: June 9, 2009
    Assignee: United Microelectronics Corp.
    Inventors: Chia-Jung Hsu, Art Yu, Hsiao-Ling Lu, Teng-Chun Tsai
  • Publication number: 20080029478
    Abstract: A shallow trench isolation (STI) multistage chemical mechanical polishing (CMP) method for forming a shallow trench isolation structure is provided. The substrate comprising a dense region and an isolation region, a silicon nitride layer formed over the substrate, a plurality of trenches formed in the silicon nitride layer and the substrate, an oxide layer formed over the substrate, filling the trenches, wherein a width of the trenches in the dense region is smaller than that in the isolation region. A first polishing step is performed to remove a portion of the silicon oxide layer until a thickness of the remaining portion of the oxide layer reaches a predetermined thickness. A second polishing step is performed to remove a portion of the remaining portion of the silicon oxide layer until the silicon nitride layer is exposed.
    Type: Application
    Filed: September 28, 2007
    Publication date: February 7, 2008
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Jung Hsu, Art Yu, Hsiao-Ling Lu, Teng-Chun Tsai
  • Patent number: 7294575
    Abstract: A shallow trench isolation (STI) multistage chemical mechanical polishing (CMP) method for forming a shallow trench isolation structure is provided. The substrate comprising a dense region and an isolation region, a silicon nitride layer formed over the substrate, a plurality of trenches formed in the silicon nitride layer and the substrate, an oxide layer formed over the substrate, filling the trenches, wherein a width of the trenches in the dense region is smaller than that in the isolation region. A first polishing step is performed to remove a portion of the silicon oxide layer until a thickness of the remaining portion of the oxide layer reaches a predetermined thickness. A second polishing step is performed to remove a portion of the remaining portion of the silicon oxide layer until the silicon nitride layer is exposed.
    Type: Grant
    Filed: January 5, 2004
    Date of Patent: November 13, 2007
    Assignee: United Microelectronics Corp.
    Inventors: Chia-Rung Hsu, Art Yu, Hsiao-Ling Lu, Teng-Chun Tsai
  • Publication number: 20060172526
    Abstract: A method for improving edge peeling defect is disclosed in this invention. According to this invention, a wafer can be kept from the edge peeling defect of the prior art by introducing a step for removing the weakly adhesive films and the metal structures at the wafer edge after forming a metal interconnect layer on the wafer. Thus, this invention can raise the yield of semiconductor manufacturing, and reduce the pollution chance of the chamber of the semiconductor manufacture.
    Type: Application
    Filed: January 13, 2006
    Publication date: August 3, 2006
    Inventors: Chia-Lin Hsu, Shu-Hsien Lee, Chien-Chien Tsai, Hsiao-Ling Lu
  • Publication number: 20050148184
    Abstract: A shallow trench isolation (STI) multistage chemical mechanical polishing (CMP) method for forming a shallow trench isolation structure is provided. The substrate comprising a dense region and an isolation region, a silicon nitride layer formed over the substrate, a plurality of trenches formed in the silicon nitride layer and the substrate, an oxide layer formed over the substrate, filling the trenches, wherein a width of the trenches in the dense region is smaller than that in the isolation region. A first polishing step is performed to remove a portion of the silicon oxide layer until a thickness of the remaining portion of the oxide layer reaches a predetermined thickness. A second polishing step is performed to remove a portion of the remaining portion of the silicon oxide layer until the silicon nitride layer is exposed.
    Type: Application
    Filed: January 5, 2004
    Publication date: July 7, 2005
    Inventors: Chia-Rung Hsu, Art Yu, Hsiao-Ling Lu, Teng-Chun Tsai
  • Patent number: 6913978
    Abstract: A method of fabricating a shallow trench isolation structure is disclosed. On a substrate, a pad oxide layer and a mask layer are successively formed. The pad oxide layer, the mask layer and a portion of the substrate are patterned to form a trench. After performing a rapid wet thermal process, a liner layer is formed on the exposed surface of the substrate, including the exposed silicon surface of the substrate in the trench and sidewalls and the surface of the mask layer. An oxide layer is deposited over the trench and the substrate and fills the trench. A planarization process is performed until the mask layer is exposed. The mask layer and the pad oxide layer are removed to complete the shallow trench isolation structure.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: July 5, 2005
    Assignee: United Microelectronics Corp.
    Inventors: Neng-Kuo Chen, Hsiu-Chuan Chu, Chih-An Huang, Hsiao-Ling Lu, Teng-Chun Tsai
  • Publication number: 20050085163
    Abstract: A method for improving edge peeling defect is disclosed in this invention. According to this invention, a wafer can be kept from the edge peeling defect of the prior art by introducing a step for removing the weakly adhesive films and the metal structures at the wafer edge after forming a metal interconnect layer on the wafer. Thus, this invention can raise the yield of semiconductor manufacturing, and reduce the pollution chance of the chamber of the semiconductor manufacture.
    Type: Application
    Filed: October 16, 2003
    Publication date: April 21, 2005
    Inventors: Chia-Lin Hsu, Shu-Hsien Lee, Chien-Chien Tsai, Hsiao-Ling Lu
  • Publication number: 20050054277
    Abstract: A wafer polishing method is provided. A first polishing pad comprising a plurality of abrasive units is provided. A first polishing operation is performed on the first polishing pad to planarize a wafer. Thereafter, a second polishing pad comprising a plurality of abrasive units is provided. The surface of the abrasive unit in contact with the wafer is roughened. A second polishing operation is performed on the second polishing pad. Since a second polishing operation using a second polishing pad with a roughened surface is performed, gradual reduction of polishing rate as the polish layer is planarized can be avoided.
    Type: Application
    Filed: September 4, 2003
    Publication date: March 10, 2005
    Inventors: Teng-Chun Tsai, Hsiao-Ling Lu, Shin-Ku Chu, Gene Li
  • Patent number: 6661097
    Abstract: In copper backend integrated circuit technology, advanced technology using low-k organic-based interlayer dielectrics have a problem of carbon contamination that dos not occur in circuits using oxide as dielectric. A composite liner layer for the copper lines uses Ti as the bottom layer, which has the property of gettering carbon and other contaminants. The known problem with Ti of reacting with copper to form a high resistivity compound is avoided by adding a layer of TiN, which isolates the Ti and the copper.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: December 9, 2003
    Assignee: International Business Machines Corporation
    Inventors: Larry Clevenger, Stanley J. Klepeis, Hsiao-Ling Lu, Jeffrey R. Marino, Andrew Herbert Simon, Yun-Yu Wang, Kwong Hon Wong, Chih-Chao Yang
  • Patent number: 6251779
    Abstract: This invention provides a method of forming a self-aligned silicide of a semiconductor wafer, the surface of the semiconductor wafer comprising at least one silicon device. A cobalt-containing metallic layer is formed on the semiconductor wafer which covers on the surface of the silicon device. A first thermal treatment process is performed to rapidly heat the semiconductor wafer up to 300˜500° C. for 10˜50 seconds and form Co2Si on the surface of the silicon device. A second thermal treatment process is performed to rapidly heat the semiconductor wafer up to 400˜680° C. for 20˜50 seconds and then cool down the semiconductor wafer afterwards so as to convert Co2Si into CoSi. An etching process is performed to remove the metallic layer. A third thermal treatment process is performed to rapidly heat the semiconductor wafer up to 700˜950° C. for 30˜60 seconds and then cool down the semiconductor wafer afterward so as to convert CoSi into the self-aligned silicide.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: June 26, 2001
    Assignee: United Microelectronics Corp.
    Inventors: Hsiao-Ling Lu, Li-Yeat Chen, Wen-Yi Hsieh
  • Patent number: 6249138
    Abstract: A method of testing a leakage current caused by a self-aligned silicide process is described. The invention uses different test structure to monitor degree of and reason for a leakage current caused by a self-aligned silicide process. While monitoring a self-aligned silicide process performed on a metal-oxide semiconductor transistor without a LDD region, in addition to considering a leakage current occurring from the metal silicide layer to the junction and occurring at edge of the metal silicide layer, the invention further considers a leakage current at comer of the metal silicide layer. For a metal-oxide semiconductor transistor having a LDD region, the invention further considers a leakage current from the metal silicide layer to the LDD region. The invention monitors a leakage current at comer of the metal silicide layer.
    Type: Grant
    Filed: November 23, 1999
    Date of Patent: June 19, 2001
    Assignees: United Microelectronics Corp., United Silicon Incorporated
    Inventors: Michael WC Huang, Gwo-Shii Yang, Hsiao-Ling Lu, Wen-Yi Hsieh
  • Patent number: 6235606
    Abstract: A method for fabricating a shallow trench isolation. A pad oxide layer and a mask layer are formed over a substrate. The pad oxide layer, the mask layer, and the substrate are patterned to form a trench exposing a portion of the substrate. A liner oxide layer is formed on the substrate exposed by the trench. An isolation layer is formed over the substrate to cover the liner oxide layer. The isolation layer is conformal to the trench. An oxide layer is formed over the substrate to fill the trench. A portion of the oxide layer and the isolation layer is removed until the mask layer is exposed. The mask layer and the pad oxide layer are removed to form a shallow trench isolation.
    Type: Grant
    Filed: January 4, 1999
    Date of Patent: May 22, 2001
    Assignee: United Microelectronics Corp.
    Inventors: Michael W C Huang, Kuo-Tai Huang, Hsiao-Ling Lu, Tri-Rung Yew
  • Patent number: 6140192
    Abstract: A method for fabricating a semiconductor device. A substrate having a gate is provided. An ion implantation process is performed to form lightly doped source/drain region in the substrate. A liner layer and an insulation layer are formed over a substrate in sequence. A portion of the insulation layer is removed by an anisotropic etching process. The insulation layer remaining on sidewalls of the gate is used as a spacer. A top of the spacer is substantially level with an upper surface of the liner layer. An ion implantation process is performed to form heavily doped source/drain region in the substrate. A portion of the spacer is removed by wet etching. As a result, a top surface of the spacer is lower than the upper surface of the gate. The method can increase the exposed surface of the gate and maintain sufficient width of the lightly doped source/drain region to prevent the hot carrier effect and the short channel effect.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: October 31, 2000
    Assignee: United Microelectronics Corp.
    Inventors: Michael W C Huang, Hsiao-Ling Lu, Tri-Rung Yew