Patents by Inventor Hsien Wang

Hsien Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11949040
    Abstract: A method for manufacturing a semiconductor device is provided. The method includes forming a plurality of diodes on a first substrate and forming a first pattern array on a second substrate. The method also includes transferring the plurality of diodes from the first substrate to the second substrate. The method further includes forming the first pattern array on a third substrate. In addition, the method includes transferring the plurality of diodes from the second substrate to the third substrate. The method also includes forming a second pattern array on a fourth substrate. The method further includes transferring the plurality of diodes from the third substrate to the fourth substrate. The pitch between the plurality of diodes on the first substrate is different from the pitch of the first pattern array.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: April 2, 2024
    Assignee: INNOLUX CORPORATION
    Inventors: Kai Cheng, Tsau-Hua Hsieh, Fang-Ying Lin, Tung-Kai Liu, Hui-Chieh Wang, Chun-Hsien Lin, Jui-Feng Ko
  • Patent number: 11943935
    Abstract: A layout pattern of a magnetoresistive random access memory (MRAM) includes a substrate having a first cell region, a second cell region, a third cell region, and a fourth cell region and a diffusion region on the substrate extending through the first cell region, the second cell region, the third cell region, and the fourth cell region. Preferably, the diffusion region includes a H-shape according to a top view.
    Type: Grant
    Filed: September 26, 2022
    Date of Patent: March 26, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Yen Tseng, Shu-Ru Wang, Yu-Tse Kuo, Chang-Hung Chen, Yi-Ting Wu, Shu-Wei Yeh, Ya-Lan Chiou, Chun-Hsien Huang
  • Publication number: 20240096784
    Abstract: Some embodiments of the present disclosure relate to an integrated chip including an extended via that spans a combined height of a wire and a via and that has a smaller footprint than the wire. The extended via may replace a wire and an adjoining via at locations where the sizing and the spacing of the wire are reaching lower limits. Because the extended via has a smaller footprint than the wire, replacing the wire and the adjoining via with the extended via relaxes spacing and allows the size of the pixel to be further reduced. The extended via finds application for capacitor arrays used for pixel circuits.
    Type: Application
    Filed: January 3, 2023
    Publication date: March 21, 2024
    Inventors: Meng-Hsien Lin, Hsing-Chih Lin, Ming-Tsong Wang, Min-Feng Kao, Kuan-Hua Lin, Jen-Cheng Liu, Dun-Nian Yaung, Ko Chun Liu
  • Publication number: 20240096630
    Abstract: Disclosed is a semiconductor fabrication method. The method includes forming a gate stack in an area previously occupied by a dummy gate structure; forming a first metal cap layer over the gate stack; forming a first dielectric cap layer over the first metal cap layer; selectively removing a portion of the gate stack and the first metal cap layer while leaving a sidewall portion of the first metal cap layer that extends along a sidewall of the first dielectric cap layer; forming a second metal cap layer over the gate stack and the first metal cap layer wherein a sidewall portion of the second metal cap layer extends further along a sidewall of the first dielectric cap layer; forming a second dielectric cap layer over the second metal cap layer; and flattening a top layer of the first dielectric cap layer and the second dielectric cap layer using planarization operations.
    Type: Application
    Filed: January 12, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Wei Yin, Tzu-Wen Pan, Yu-Hsien Lin, Yu-Shih Wang, Jih-Sheng Yang, Shih-Chieh Chao, Yih-Ann Lin, Ryan Chia-Jen Chen
  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Publication number: 20240088124
    Abstract: A semiconductor structure, comprising a redistribution layer (RDL) including a dielectric layer and a conductive trace within the dielectric layer; a first conductive member disposed over the RDL and electrically connected with the conductive trace; a second conductive member disposed over the RDL and electrically connected with the conductive trace; a first die disposed over the RDL; a second die disposed over the first die, the first conductive member and the second conductive member; and a connector disposed between the second die and the second conductive member to electrically connect the second die with the conductive trace, wherein the first conductive member is electrically isolated from the second die.
    Type: Application
    Filed: November 24, 2023
    Publication date: March 14, 2024
    Inventors: HSIANG-TAI LU, SHUO-MAO CHEN, MILL-JER WANG, FENG-CHENG HSU, CHAO-HSIANG YANG, SHIN-PUU JENG, CHENG-YI HONG, CHIH-HSIEN LIN, DAI-JANG CHEN, CHEN-HUA LIN
  • Publication number: 20240087644
    Abstract: A forming operation of resistive memory device is provided. The operation includes: applying a pre-forming gate voltage and a pre-forming bit line voltage to a target memory cell; performing a dense switching forming operation, wherein the dense switching forming operation includes alternately performing dense set operations and dense reset operations on the target memory cell, wherein the dense set operation includes applying a dense switching gate voltage and a dense set bit line voltage; and performing a normal set operation on the target memory cell, wherein the normal set operation includes applying a normal set gate voltage and a normal set bit line voltage to the target memory cell, the normal set gate voltage is greater than the pre-forming gate voltage and the dense switching gate voltage, and the normal set bit line voltage is less than the pre-forming bit line voltage and the dense set bit line voltage.
    Type: Application
    Filed: August 29, 2023
    Publication date: March 14, 2024
    Applicant: Winbond Electronics Corp.
    Inventors: I-Hsien Tseng, Lung-Chi Cheng, Ju-Chieh Cheng, Jun-Yao Huang, Ping-Kun Wang
  • Publication number: 20240083960
    Abstract: This disclosure relates to engineered SIRP? variants, and methods of use thereof.
    Type: Application
    Filed: October 31, 2023
    Publication date: March 14, 2024
    Inventors: Jiin-Tarng Wang, Han-Fang Teng, Pan-Hsien Kuo, Chi-Ling Tseng, Zong Sean Juo
  • Publication number: 20240075308
    Abstract: The present invention provides a plasma device for skin repair, which includes a plasma head, a power supply, a gas supply source, and a control box. The plasma head includes an inner sleeve and an outer sleeve which are sleeved together. The inner sleeve has a first bottom portion having several first through holes. The outer sleeve has a second bottom portion having several second through holes. A gap is formed between the first bottom portion and the second bottom portion. The power supply is configured to provide 13.56 MHz to 54 MHz radio frequency power to generate a discharge in the gap. The gas supply source is configured to provide reaction gas into the gap, and plasma is formed by the reaction gas under the discharge. The control box is configured to control operating parameters of the plasma head, the power supply, and the gas supply source.
    Type: Application
    Filed: August 28, 2023
    Publication date: March 7, 2024
    Applicant: Longyi Bio-Medical Technology Ltd.
    Inventors: Che-hsin LIN, Yao-hsien WANG
  • Publication number: 20240072170
    Abstract: A semiconductor device is disclosed. The semiconductor device includes a semiconductor fin. The semiconductor device includes first spacers over the semiconductor fin. The semiconductor device includes a metal gate structure, over the semiconductor fin, that is sandwiched at least by the first spacers. The semiconductor device includes a gate electrode contacting the metal gate structure. An interface between the metal gate structure and the gate electrode has its side portions extending toward the semiconductor fin with a first distance and a central portion extending toward the semiconductor fin with a second distance, the first distance being substantially less than the second distance.
    Type: Application
    Filed: August 24, 2022
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Wei Yin, Tzu-Wen Pan, Yu-Hsien Lin, Yu-Shih Wang, Yih-Ann Lin, Chia Ming Liang, Ryan Chia-Jen CHEN
  • Publication number: 20240072090
    Abstract: Various embodiments of the present disclosure are directed towards a stacked complementary metal-oxide semiconductor (CMOS) image sensor in which a pixel sensor spans multiple integrated circuit (IC) chips and is devoid of a shallow trench isolation (STI) structure at a photodetector of the pixel sensor. The photodetector and a first transistor form a first portion of the pixel sensor at a first IC chip. A plurality of second transistors forms a second portion of the pixel sensor at a second IC chip. By omitting the STI structure at the photodetector, a doped well surrounding and demarcating the pixel sensor may have a lesser width than it would otherwise have. Hence, the doped well may consume less area of the photodetector. This, in turn, allows enhanced scaling down of the pixel sensor.
    Type: Application
    Filed: January 5, 2023
    Publication date: February 29, 2024
    Inventors: Chi-Hsien Chung, Tzu-Jui Wang, Tzu-Hsuan Hsu, Chen-Jong Wang, Dun-Nian Yaung
  • Patent number: 11915755
    Abstract: A layout of a semiconductor memory device includes a substrate and a ternary content addressable memory (TCAM). The TCAM is disposed on the substrate and includes a plurality of TCAM bit cells, where at least two of the TCAM bit cells are mirror-symmetrical along an axis of symmetry, and each of the TCAM bit cells includes two storage units electrically connected to two word lines respectively, and a logic circuit electrically connected to the storage units. The logic circuit includes two first reading transistors, and two second reading transistors, where each of the second reading transistors includes a gate and source and drain regions, the source and drain regions of the second reading transistors are electrically connected to two matching lines and the first reading transistors, respectively, where the word lines are disposed parallel to and between the matching lines.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: February 27, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Yen Tseng, Yu-Tse Kuo, Shu-Ru Wang, Chun-Hsien Huang, Hsin-Chih Yu, Meng-Ping Chuang, Li-Ping Huang, Yu-Fang Chen
  • Patent number: 11916314
    Abstract: A mobile device includes a housing, a first radiation element, a second radiation element, a third radiation element, a first switch element, and a second switch element. The first radiation element has a first feeding point. The second radiation element has a second feeding point. The first radiation element, the second radiation element, and the third radiation element are distributed over the housing. The first switch element is closed or open, so as to selectively couple the first radiation element to the third radiation element. The second switch element is closed or open, so as to selectively couple the second radiation element to the third radiation element. An antenna structure is formed by the first radiation element, the second radiation element, and the third radiation element.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: February 27, 2024
    Assignee: HTC Corporation
    Inventors: Cheng-Hung Lin, Szu-Po Wang, Chia-Te Chien, Chun-Chieh Wang, Kang-Ling Li, Chun-Hsien Lee, Yu-Chieh Chiu
  • Publication number: 20240050946
    Abstract: The present disclosure provides a biosensor chip including: a top cover including a sample loading slot for injecting blood sample, a glue injection hole, and a vent hole; a plasma separation membrane overlapping the sample slot; a conjugate pad overlapping the plasma separation membrane; an optical fiber; and a bottom cover including a conjugate pad groove for setting the conjugate pad, an optical fiber channel for setting the optical fiber, a glue injection groove corresponding to the position of the glue injection hole in the top cover, and a waste liquid tank, wherein the conjugate pad groove and the optical fiber channel are connected, the glue injection groove overlaps with the optical fiber channel, the vent hole is located on the waste liquid tank, and the upper cover further includes a separation membrane groove where the plasma separation membrane is set, and a flow channel connecting the optical fiber channel and the waste liquid tank.
    Type: Application
    Filed: May 29, 2023
    Publication date: February 15, 2024
    Inventors: Lai-Kwan Chau, Chih-Hsien Wang, Yue-Jin Cai
  • Patent number: D1014773
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: February 13, 2024
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Chih-Hsien Wang, Shih-Chieh Chang, Yan-Jun Wang, Peng-Hui Wang, Ming-Chieh Cheng
  • Patent number: D1014774
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: February 13, 2024
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Chih-Hsien Wang, Shih-Chieh Chang, Yan-Jun Wang, Peng-Hui Wang, Ming-Chieh Cheng, Chuan-Hsi Chang
  • Patent number: D1014775
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: February 13, 2024
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Chih-Hsien Wang, Shih-Chieh Chang, Yan-Jun Wang, Peng-Hui Wang, Ming-Chieh Cheng
  • Patent number: D1017061
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: March 5, 2024
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Chih-Hsien Wang, Shih-Chieh Chang, Yan-Jun Wang, Peng-Hui Wang, Ming-Chieh Cheng
  • Patent number: D1017062
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: March 5, 2024
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Chih-Hsien Wang, Shih-Chieh Chang, Chuan-Hsi Chang, Peng-Hui Wang, Ming-Chieh Cheng
  • Patent number: D1018891
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: March 19, 2024
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Chih-Hsien Wang, Shih-Chieh Chang, Peng-Hui Wang, Ming-Chieh Cheng, Xiu-Yi Lin