Patents by Inventor Hsin-Chi Chen

Hsin-Chi Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11233082
    Abstract: A method for forming a light sensing device is provided. The method includes forming a light sensing region in a semiconductor substrate and forming a light shielding layer over the semiconductor substrate. The method also includes forming a dielectric layer over the light shielding layer and partially removing the light shielding layer and the dielectric layer to form a light shielding element and a dielectric element. A top width of the light shielding element is greater than a bottom width of the dielectric element. The light shielding element and the dielectric element surround a recess, and the recess is aligned with the light sensing region. The method further includes forming a filter element in the recess.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: January 25, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Wei Cheng, Yi-Hsing Chu, Yin-Chieh Huang, Chun-Hao Chou, Kuo-Cheng Lee, Hsun-Ying Huang, Hsin-Chi Chen
  • Publication number: 20210407947
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a substrate having one or more devices formed thereon, one or more bonding pads disposed over the substrate, and a first passivation layer disposed over the one or more bonding pads. The first passivation layer includes a first passivation sublayer having a first dielectric material, a second passivation sublayer disposed over the first passivation sublayer, and the second passivation sublayer has a second dielectric material different from the first dielectric material. The first passivation layer further includes a third passivation sublayer disposed over the second passivation sublayer, and the third passivation sublayer has a third dielectric material different from the second dielectric material. At least two of the first, second, and third passivation sublayers each includes a nitride.
    Type: Application
    Filed: June 30, 2020
    Publication date: December 30, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Chi CHEN, Hsun-Ying HUANG, Chih-Ming LEE, Shang-Yen WU, Chih-An YANG, Hung-Wei HO, Chao-Ching CHANG, Tsung-Wei HUANG
  • Patent number: 11211283
    Abstract: Bulk semiconductor substrates configured to exhibit semiconductor-on-insulator (SOI) behavior, and corresponding methods of fabrication, are disclosed herein. An exemplary bulk substrate configured to exhibit SOI behavior includes a first isolation trench that defines a channel region of the bulk substrate and a second isolation trench that defines an active region that includes the channel region. The first isolation trench includes a first isolation trench portion and a second isolation trench portion disposed over the first isolation trench portion. A first isolation material fills the first isolation trench portion, and an epitaxial material fills the second isolation trench portion. The epitaxial material is disposed on the first isolation material. A second isolation material fills the second isolation trench. A portion of the bulk substrate underlying the first isolation trench and the channel region is configured to have a higher resistance than the bulk substrate.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: December 28, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Gulbagh Singh, Kun-Tsang Chuang, Hsin-Chi Chen
  • Publication number: 20210377481
    Abstract: A photodetector circuit includes a photodetector and a sensing circuit located over a substrate semiconductor layer having a doping of a first conductivity type. The photodetector includes a second-conductivity-type pinned photodiode layer that forms a p-n junction with the substrate semiconductor layer, at least one floating diffusion region that is laterally spaced from a periphery of the second-conductivity-type pinned photodiode layer, and at least one transfer gate electrode. At least two different operations may be performed by applying at least two different pulse patterns to the at least one transfer gate electrode. The at least two different pulse patterns differ from one another or from each other by at least one of pulse duration, pulse magnitude, and delay time between a control signal applied to the sensing circuit and pulse initiation at a respective one of the at least one transfer gate electrode.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 2, 2021
    Inventors: Feng-Chien HSIEH, Wei-Li HU, Kuo-Cheng LEE, Hsin-Chi CHEN, Yun-Wei CHENG
  • Patent number: 11189743
    Abstract: A photodetector includes: a substrate; a first semiconductor region, the first semiconductor region extending into the substrate from a front side of the substrate; and a second semiconductor region, the second semiconductor region further extending into the substrate from a bottom boundary of the first semiconductor region, wherein when the photodetector operates under a Geiger mode, the second semiconductor region is fully depleted to absorb a radiation source received from a back side of the substrate.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: November 30, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Yu Wei, Yu-Ting Kao, Yen-Liang Lin, Wen-I Hsu, Hsun-Ying Huang, Kuo-Cheng Lee, Hsin-Chi Chen
  • Patent number: 11183523
    Abstract: The present disclosure relates to a CMOS image sensor, and an associated method of formation. In some embodiments, the CMOS image sensor comprises a floating diffusion region disposed at one side of a transfer gate within a substrate and a photo detecting column disposed at the other side of the transfer gate opposing to the floating diffusion region within the substrate. The photo detecting column comprises a doped sensing layer with a doping type opposite to that of the substrate. The photo detecting column and the substrate are in contact with each other at a junction interface comprising one or more recessed portions. By forming the junction interface with recessed portions, the junction interface is enlarged compared to a previous p-n junction interface without recessed portions, and thus a full well capacity of the photodiode structure is improved.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: November 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Yu Wei, Hsin-Chi Chen, Kuo-Cheng Lee, Ping-Hao Lin, Hsun-Ying Huang, Yen-Liang Lin, Yu Ting Kao
  • Patent number: 11172142
    Abstract: An image sensor device has a first number of first pixels disposed in a substrate and a second number of second pixels disposed in the substrate. The first number is substantially equal to the second number. A light-blocking structure disposed over the first pixels and the second pixels. The light-blocking structure defines a plurality of first openings and second openings through which light can pass. The first openings are disposed over the first pixels. The second openings are disposed over the second pixels. The second openings are smaller than the first openings. A microcontroller is configured to turn on different ones of the second pixels at different points in time.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: November 9, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee, Hsin-Chi Chen
  • Publication number: 20210327902
    Abstract: A circuit includes a base silicon layer, a base oxide layer, a first top silicon layer, a second top silicon layer, a first semiconductor device, and a second semiconductor device. The base oxide layer is formed over the base silicon layer. The first top silicon layer is formed over a first region of the base oxide layer and has a first thickness. The second top silicon layer is formed over a second region of the base oxide layer and has a second thickness less than the first thickness. The first semiconductor device is formed over the first top silicon layer and the second semiconductor device is formed over the second top silicon layer. The ability to fabricate a top silicon layers with differing thicknesses can provide a single substrate having devices with different characteristics, such as having both fully depleted and partially depleted devices on a single substrate.
    Type: Application
    Filed: April 17, 2020
    Publication date: October 21, 2021
    Inventors: Gulbagh Singh, Kuan-Liang Liu, Wang Po-Jen, Kun-Tsang Chuag, Hsin-Chi Chen
  • Publication number: 20210327932
    Abstract: A semiconductor structure includes a photodetector, which includes a substrate semiconductor layer having a doping of a first conductivity type, a second-conductivity-type photodiode layer that forms a p-n junction with the substrate semiconductor layer, a floating diffusion region that is laterally spaced from the second-conductivity-type photodiode layer, and a transfer gate electrode including a lower transfer gate electrode portion that is formed within the substrate semiconductor layer and located between the second-conductivity-type photodiode layer and the floating diffusion region. The transfer gate electrode may laterally surround the p-n junction, and may provide enhanced electron transmission efficiency from the p-n junction to the floating diffusion region. An array of photodetectors may be used to provide an image sensor.
    Type: Application
    Filed: April 20, 2020
    Publication date: October 21, 2021
    Inventors: Feng-Chien Hsieh, Yun-Wei Cheng, Wei-Li Hu, Kuo-Cheng Lee, Hsin-Chi Chen
  • Publication number: 20210328009
    Abstract: A semiconductor device includes a substrate, a gate oxide layer formed on the substrate, a gate formed on the gate oxide layer, and a spacer formed adjacent the gate and over the substrate. The spacer includes a void filled with air to prevent leakage of charge to and from the gate, thereby reducing data loss and providing better memory retention. The reduction in charge leakage results from reduced parasitic capacitances, fringing capacitances, and overlap capacitances due to the low dielectric constant of air relative to other spacer materials. The spacer can include multiple layers such as oxide and nitride layers. In some embodiments, the semiconductor device is a multiple-time programmable (MTP) memory device.
    Type: Application
    Filed: April 17, 2020
    Publication date: October 21, 2021
    Inventors: Gulbagh Singh, Kun-Tsang Chuang, Hsin-Chi Chen
  • Patent number: 11152417
    Abstract: The present disclosure is directed to anchor structures and methods for forming anchor structures such that planarization and wafer bonding can be uniform. Anchor structures can include anchor layers formed on a dielectric layer surface and anchor pads formed in the anchor layer and on the dielectric layer surface. The anchor layer material can be selected such that the planarization selectivity of the anchor layer, anchor pads, and the interconnection material can be substantially the same as one another. Anchor pads can provide uniform density of structures that have the same or similar material.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: October 19, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Yu Wei, Cheng-Yuan Li, Hsin-Chi Chen, Kuo-Cheng Lee, Hsun-Ying Huang, Yen-Liang Lin
  • Patent number: 11145539
    Abstract: The present disclosure describes a fabrication method that can form air-gaps in shallow trench isolation structures (STI) structures. For example, the method includes patterning a semiconductor layer over a substrate to form semiconductor islands and oxidizing the sidewall surfaces of the semiconductor islands to form first liners on the sidewall surfaces. Further, the method includes depositing a second liner over the first liners and the substrate and depositing a first dielectric layer between the semiconductor islands. The second liner between the first dielectric layer and the first liners is removed to form openings between the first dielectric layer and the first liners. A second dielectric layer is deposited over the first dielectric layer to enclose the openings and form air-gaps between the first dielectric layer and the first liners so that the gaps are positioned along the first liners.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: October 12, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Gulbagh Singh, Hsin-Chi Chen, Kun-Tsang Chuang
  • Patent number: 11140309
    Abstract: An image sensor including a semiconductor substrate, a plurality of color filters, a plurality of first lenses and a second lens is provided. The semiconductor substrate includes a plurality of sensing pixels arranged in array, and each of the plurality of sensing pixels respectively includes a plurality of image sensing units and a plurality of phase detection units. The color filters at least cover the plurality of image sensing units. The first lenses are disposed on the plurality of color filters. Each of the plurality of first lenses respectively covers one of the plurality of image sensing units. The second lens is disposed on the plurality of color filters and the second lens covers the plurality of phase detection units.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: October 5, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Hsin-Chi Chen, Kuo-Cheng Lee, Hsun-Ying Huang
  • Publication number: 20210305205
    Abstract: A front-side peripheral region of a first wafer may be edge-trimmed by performing a first pre-bonding edge-trimming process. A second wafer to be bonded with the first wafer is provided. Optionally, a front-side peripheral region of the second wafer may be edge-trimmed by performing a second pre-bonding edge-trimming process. A front surface of the first wafer is bonded to a front surface of a second wafer to form a bonded assembly. A backside of the first wafer is thinned by performing at least one wafer thinning process. The first wafer and a front-side peripheral region of the second wafer may be edge-trimmed by performing a post-bonding edge-trimming process. The bonded assembly may be subsequently diced into bonded semiconductor chips.
    Type: Application
    Filed: March 31, 2020
    Publication date: September 30, 2021
    Inventors: Feng-Chien Hsieh, Hsin-Chi Chen, Kuo-Cheng Lee, Mu-Han Cheng, Yun-Wei Cheng
  • Patent number: 11121141
    Abstract: A semiconductor structure includes a semiconductor substrate, at least one raised dummy feature, at least one memory cell, and at least one word line. The raised dummy feature is present on the semiconductor substrate and defines a cell region on the semiconductor substrate. The memory cell is present on the cell region. The word line is present adjacent to the memory cell.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: September 14, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chiang-Ming Chuang, Chien-Hsuan Liu, Chih-Ming Lee, Kun-Tsang Chuang, Hung-Che Liao, Hsin-Chi Chen
  • Publication number: 20210273009
    Abstract: A bonding pad structure comprises an interconnect layer, an isolation layer over the interconnect layer, a conductive pad, and one or more non-conducting stress-releasing structures. The conductive pad comprises a planar portion over the isolation layer, and one or more bridging portions extending through at least the isolation layer and to the interconnect layer for establishing electric contact therewith, wherein there is a trench in the one or more bridging portions. The one or more non-conducting stress-releasing structures are disposed between the isolation layer and the conductive pad. The trench is surrounded by one of the one or more non-conducting stress-releasing structures from a top view.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Inventors: Volume Chien, I-Chih Chen, Hsin-Chi Chen, Hung-Ta Huang, Ying-Hao Chen, Ying-Lang Wang
  • Publication number: 20210200196
    Abstract: A data processing system, including a cyclic correlation establishing module, a data pattern establishing module, and a data pattern alignment module, is provided. The cyclic correlation establishing module receives a plurality of first sensor data, obtained from a first sensor operation performed on processing devices, and receives a table of processing steps and cyclic procedures. The cyclic correlation establishing module obtains a data correlation of the first sensor data according to the number of sample points in a data cycle of the first sensor data and the table to correct the first sensor data. The data pattern establishing module obtains a plurality of first data pattern features from the first sensor data. The data pattern alignment module aligns a plurality of second sensor data obtained from a second sensor operation performed on the processing devices with the first sensor data according to the first data pattern features.
    Type: Application
    Filed: May 14, 2020
    Publication date: July 1, 2021
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Hsin-Chi CHEN, Chuang-Hua CHUEH, Chun-Fang CHEN, Chi-Heng LIN, Chun-Hsu Chen
  • Publication number: 20210202564
    Abstract: A method includes providing a semiconductor substrate having a front side surface and a back side surface opposite to the front side surface. A photosensitive region of the semiconductor substrate is etched to form a recess. A semiconductor material is deposited on the semiconductor substrate to form a radiation sensing member filling the recess. The semiconductor material has an optical band gap energy smaller than 1.77 eV. A device layer is formed over the front side surface of the semiconductor substrate and the radiation sensing member. A trench isolation is formed in an isolation region of the semiconductor substrate and extending from the back side surface of the semiconductor substrate.
    Type: Application
    Filed: February 24, 2021
    Publication date: July 1, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Yu WEI, Yen-Liang LIN, Kuo-Cheng LEE, Hsun-Ying HUANG, Hsin-Chi CHEN
  • Publication number: 20210185431
    Abstract: Embodiments of the present disclosure provide an inverter vent and a loudspeaker having the same. Preferably, air flows within the inverted vent in a 360 degrees full-circumferential direction. This design can improve the efficiency of the loudspeaker, reduce the wind noise, and increase the bass ductility.
    Type: Application
    Filed: March 9, 2020
    Publication date: June 17, 2021
    Inventors: Yao-Wei Wang, Li-Ping Pan, Ting-Yao Cheng, Hsin-Chi Chen, Li-Ren Wang, Jing-Hong Lu, Fei-Ta Chen, Ya-Shian Huang, Wei-Ting Chen
  • Patent number: 11018179
    Abstract: A semiconductor structure includes an ILD disposed over a semiconductive substrate, an isolation disposed between the semiconductive substrate and the ILD, and a conductive pad disposed within the semiconductive substrate, the isolation and the ILD. A top surface of the conductive pad is substantially parallel with two surfaces of the semiconductive substrate. The top surface of the conductive pad is between the two surfaces of the semiconductive substrate. Sidewalls of the conductive pad are in direct contact with the ILD and the isolation.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: May 25, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chia-Yu Wei, Chin-Hsun Hsiao, Yi-Hsing Chu, Yen-Liang Lin, Yung-Lung Hsu, Hsin-Chi Chen