Patents by Inventor Hsin-Po Wang

Hsin-Po Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070041293
    Abstract: A method for optimizing write parameters of an optical storage medium is provided. The method is adapted for a recording device using the optical storage medium. The method includes loading the optical storage medium having a test area into the recording device, determining a combination of an original write strategy and an original write power according to the optical storage medium, writing test data into the test area with the combination of the original write strategy and the original write power for dynamically adjusting the combination of the original write strategy and the original write power to obtain a combination of an optimal write strategy and an optimal write power, and writing data into the optical storage medium with the combination of the optimal write strategy and the optimal write power.
    Type: Application
    Filed: November 22, 2005
    Publication date: February 22, 2007
    Inventors: Yao-Yu Lee, Hsin-Po Wang, Yueh-Hsuan Tsai
  • Patent number: 7058869
    Abstract: A method and apparatus for debug, diagnosis, and/or yield improvement of a scan-based integrated circuit where scan chains embedded in a scan core 303 have no external access, such as the case when they are surrounded by pattern generators 302 and pattern compactors 305, using a DFT (design-for-test) technology such as Logic BIST (built-in self-test) or Compressed Scan. This invention includes an output-mask controller 301 and an output-mask network 304 to allow designers to mask off selected scan cells 311 from being compacted in a selected pattern compactor 305. This invention also includes an input chain-mask controller and an input-mask network for driving constant logic values into scan chain inputs of selected scan chains to allow designers to recover from scan chain hold time violations.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: June 6, 2006
    Assignee: Syntest Technologies, Inc.
    Inventors: Khader S. Abdel-Hafez, Xiaoqing Wen, Laung-Terng Wang, Po-Ching Hsu, Shih-Chia Kao, Hao-Jan Chao, Hsin-Po Wang
  • Patent number: 7007213
    Abstract: A method and apparatus for providing ordered capture clocks to detect or locate faults within N clock domains and faults crossing any two clock domains in an integrated circuit or circuit assembly in self-test or scan-test mode, where N>1 and each domain has a plurality of scan cells. The method and apparatus allows generating and loading N pseudorandom or predetermined stimuli to all the scan cells within the N clock domains in the integrated circuit or circuit assembly during the shift operation, applying an ordered sequence of capture clocks to all the scan cells within the N clock domains during the capture operation, compacting or comparing N output responses of all the scan cells for analysis during the compact/compare operation, and repeating the above process until a predetermined limiting criteria is reached. A computer-aided design (CAD) system is further developed to realize the method and synthesize the apparatus.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: February 28, 2006
    Assignee: Syntest Technologies, Inc.
    Inventors: Laung-Terng (L.-T.) Wang, Po-Ching Hsu, Shih-Chia Kao, Meng-Chyi Lin, Hsin-Po Wang, Hao-Jan Chao, Xiaoqing Wen
  • Publication number: 20050235186
    Abstract: A method and apparatus for providing ordered capture clocks to detect or locate faults within N clock domains and faults crossing any two clock domains in a scan-based integrated circuit or circuit assembly in self-test or scan-test mode, where N>1 and each domain has a plurality of scan cells. The method and apparatus will apply an ordered sequence of capture clocks to all scan cells within N clock domains where one or more capture clocks must contain one or more shift clock pulses during the capture operation. A computer-aided design (CAD) method is further developed to realize the method and synthesize the apparatus. In order to further improve the circuit's fault coverage, a CAD method and apparatus are further developed to minimize the memory usage and generate scan patterns for full-scan and feed-forward partial-scan designs containing transparent storage cells, asynchronous set/reset signals, tri-state busses, and low-power gated clocks.
    Type: Application
    Filed: June 14, 2005
    Publication date: October 20, 2005
    Applicant: Syntest Technologies, Inc.
    Inventors: Laung-Terng Wang, Meng-Chyi Lin, Xiaoqing Wen, Hsin-Po Wang, Chi-Chan Hsu, Shih-Chia Kao, Fei-Sheng Hsu
  • Patent number: 6954887
    Abstract: A method and apparatus for providing ordered capture clocks to detect or locate faults within N clock domains and faults crossing any two clock domains in a scan-based integrated circuit or circuit assembly in self-test or scan-test mode, where N>1 and each domain has a plurality of scan cells. The method and apparatus will apply an ordered sequence of capture clocks to all scan cells within N clock domains where one or more capture clocks must contain one or more shift clock pulses during the capture operation. A computer-aided design (CAD) method is further developed to realize the method and synthesize the apparatus. In order to further improve the circuit's fault coverage, a CAD method and apparatus are further developed to minimize the memory usage and generate scan patterns for full-scan and feed-forward partial-scan designs containing transparent storage cells, asynchronous set/reset signals, tri-state busses, and low-power gated clocks.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: October 11, 2005
    Assignee: Syntest Technologies, Inc.
    Inventors: Laung-Terng (L.-T.) Wang, Meng-Chyi Lin, Xiaoqing Wen, Hsin-Po Wang, Chi-Chan Hsu, Shih-Chia Kao, Fei-Sheng Hsu
  • Publication number: 20040268181
    Abstract: A method and apparatus for testing or diagnosing faults in a scan-based integrated circuit using a unified self-test and scan-test technique. The method and apparatus comprises using a unified test controller to ease prototype debug and production test. The unified test controller further comprises using a capture clock generator and a plurality of domain clock generators each embedded in a clock domain to perform self-test or scan-test. The capture clocks generated by the capture clock generator are used to guide at-speed or reduced-speed self-test (or scan-test) within each clock domain. The frequency of these capture clocks can be totally unrelated to those of system clocks controlling the clock domains. This unified approach allows designers to test or diagnose stuck-type and non-stuck-type faults with a low-cost DFT (design-for-test) tester or a low-cost DFT debugger. A computer-aided design (CAD) method is further developed to realize the method and synthesize the apparatus.
    Type: Application
    Filed: April 4, 2003
    Publication date: December 30, 2004
    Inventors: Laung-Terng Wang, Xiaoqing Wen, Khader S. Abdel-Hafez, Shyh-Horng Lin, Hsin-Po Wang, Ming-Tung Chang, Po-Ching Hsu, Shih-Chia Kao, Meng-Chyi Lin, Chi-Chan Hsu
  • Publication number: 20040237015
    Abstract: A method and apparatus for debug, diagnosis, and/or yield improvement of a scan-based integrated circuit where scan chains embedded in a scan core 303 have no external access, such as the case when they are surrounded by pattern generators 302 and pattern compactors 305, using a DFT (design-for-test) technology such as Logic BIST (built-in self-test) or Compressed Scan. This invention includes an output-mask controller 301 and an output-mask network 304 to allow designers to mask off selected scan cells 311 from being compacted in a selected pattern compactor 305. This invention also includes an input chain-mask controller and an input-mask network for driving constant logic values into scan chain inputs of selected scan chains to allow designers to recover from scan chain hold time violations.
    Type: Application
    Filed: January 23, 2004
    Publication date: November 25, 2004
    Inventors: Khader S. Abdel-Hafez, Xiaoqing Wen, Laung-Terng Wang, Po-Ching Hsu, Shih-Chia Kao, Hao-Jan Chao, Hsin-Po Wang
  • Publication number: 20040153926
    Abstract: A method and apparatus to test data and set/reset faults in a scan-based integrated circuit in a selected scan-test mode or self-test mode. The scan-based integrated circuit contains multiple scan chains, each scan chain comprising multiple scan cells coupled in series. The method comprises shifting in a plurality of predetermined stimuli during scan-test or pseudo-random stimuli during self-test to the scan-based integrated circuit, using a set/reset enable (SR_EN) signal 383 and a scan enable (SE) signal 382 to capture faults to each scan cell, and shifting out the test responses for comparison or compaction. The apparatus or set/reset controller 375 further comprises using the set/reset enable (SR_EN) signal 383 and scan enable (SE) signal 382 to selectively propagate data faults or set/reset faults to the scan cells in the integrated circuit.
    Type: Application
    Filed: October 24, 2003
    Publication date: August 5, 2004
    Inventors: Khader S. Abdel-Hafez, Laung-Terng Wang, Augusli Kifli, Fei-Sheng Hsu, Xiaoqing Wen, Meng-Chyi Lin, Hsin-Po Wang
  • Publication number: 20030154433
    Abstract: A broadcaster, system, and method for reducing test data volume and test application time in an ATE (automatic test equipment) in a scan-based integrated circuit. The scan-based integrated circuit contains multiple scan chains, each scan chain comprising multiple scan cells coupled in series. The broadcaster is a combinational logic network coupled to an optional virtual scan controller and an optional scan connector. The virtual scan controller controls the operation of the broadcaster. The system transmits virtual scan patterns stored in the ATE and generates broadcast scan patterns through the broadcaster for testing manufacturing faults in the scan-based integrated circuit. The number of scan chains that can be supported by the ATE is significantly increased. Methods are further proposed to reorder scan cells in selected scan chains, to generate the broadcast scan patterns and virtual scan patterns, and to synthesize the broadcaster and a compactor in the scan-based integrated circuit.
    Type: Application
    Filed: January 10, 2003
    Publication date: August 14, 2003
    Inventors: Laung-Terng Wang, Hsin-Po Wang, Xiaoqing Wen, Meng-Chyi Lin, Shyh-Horng Lin, Ta-Chia Yeh, Sen-Wei Tsai, Khader S. Abdel-Hafez
  • Publication number: 20030023941
    Abstract: A method and system to automate scan synthesis at register-transfer level (RTL). The method and system will produce scan HDL code modeled at RTL for an integrated circuit modeled at RTL. The method and system comprise computer-implemented steps of performing RTL testability analysis, clock-domain minimization, scan selection, test point selection, scan repair and test point insertion, scan replacement and scan stitching, scan extraction, interactive scan debug, interactive scan repair, and flush/random test bench generation. In addition, the present invention further comprises a method and system for hierarchical scan synthesis by performing scan synthesis module-by-module and then stitching these scanned modules together at top-level. The present invention further comprises integrating and verifying the scan HDL code with other design-for-test (DFT) HDL code, including boundary-scan and logic BIST (built-in self-test).
    Type: Application
    Filed: March 28, 2002
    Publication date: January 30, 2003
    Inventors: Laung-Terng (L.-T.) Wang, Augusli Kifli, Fei-Sheng Hsu, Shih-Chia Kao, Xiaoqing Wen, Shyh-Horng Lin, Hsin-Po Wang
  • Publication number: 20020194558
    Abstract: A method and apparatus for testing or diagnosing memories in an integrated circuit using memory BIST (built-in self-test) or memory scan techniques. The present invention comprises using a data generator in a BIST memory or scan memory to detect or locate coupling faults between any two bits in any memory word in each memory. It includes an address re-mapping logic in the address generator to disable all defective memory banks and to allow the integrated circuit to continue operation but at a reduced memory size. The present invention includes memory selectors one for each memory to perform memory BIST or memory scan in parallel sessions so as to optimize overall test cost and reduce peak power consumption and average power dissipation to an acceptable level. Computer-aided design (CAD) systems are further developed to synthesize the hierarchical memory BIST controller and hierarchical memory scan controller.
    Type: Application
    Filed: April 5, 2002
    Publication date: December 19, 2002
    Inventors: Laung-Terng Wang, Shyh-Horng Lin, Chi-Chan Hsu, Xiaoqing Wen, Anthony M. Vu, Yo Han Park, Hsin-Po Wang
  • Publication number: 20020184560
    Abstract: A method and apparatus for providing ordered capture clocks to detect or locate faults within N clock domains and faults crossing any two clock domains in a scan-based integrated circuit or circuit assembly in self-test or scan-test mode, where N>1 and each domain has a plurality of scan cells. The method and apparatus will apply an ordered sequence of capture clocks to all scan cells within N clock domains where one or more capture clocks must contain one or more shift clock pulses during the capture operation. A computer-aided design (CAD) method is further developed to realize the method and synthesize the apparatus. In order to further improve the circuit's fault coverage, a CAD method and apparatus are further developed to minimize the memory usage and generate scan patterns for full-scan and feed-forward partial-scan designs containing transparent storage cells, asynchronous set/reset signals, tri-state busses, and low-power gated clocks.
    Type: Application
    Filed: March 20, 2002
    Publication date: December 5, 2002
    Inventors: Laung-Terng Wang, Meng-Chyi Lin, Xiaoqing Wen, Hsin-Po Wang, Chi-Chan Hsu, Shih-Chia Kao, Fei-Sheng Hsu
  • Publication number: 20020138801
    Abstract: A method and apparatus for inserting design-for-debug (DFD) circuitries in an integrated circuit to debug or diagnose DFT modules, including scan cores, memory BIST (built-in self-test) cores, logic BIST cores, and functional cores. The invention further comprises using a DFD controller for executing a plurality of DFD commands to debug or diagnosis the DFT modules embedded with the DFD circuitries. When used alone or combined together, these DFD commands will detect or locate physical failures in the DFT modules in the integrated circuit on an evaluation board or system using a low-cost DFT debugger. A computer-aided design (CAD) method is further developed to synthesize the DFD controller and DFD circuitries according to the IEEE 1149.1 Boundary-scan Std. The DFD controller supports, but is not limited to, the following DFD commands: RUN_SCAN, RUN_MBIST, RUN_LBIST, DBG_SCAN, DBG_MBIST, DBG_LBIST, DBG_FUNCTION, SELECT, SHIFT, SHIFT_CHAIN, CAPTURE, RESET, BREAK, RUN, STEP, and STOP.
    Type: Application
    Filed: February 27, 2002
    Publication date: September 26, 2002
    Inventors: Laung-Terng Wang, Ming-Tung Chang, Shyh-Horng Lin, Hao-Jan Chao, Jaehee Lee, Hsin-Po Wang, Xiaoqing Wen, Po-Ching Hsu, Shih-Chia Kao, Meng-Chyi Lin, Sen-Wei Tsai, Chi-Chan Hsu
  • Publication number: 20020120896
    Abstract: A method and apparatus for providing ordered capture clocks to detect or locate faults within N clock domains and faults crossing any two clock domains in an integrated circuit or circuit assembly in self-test or scan-test mode, where N>1 and each domain has a plurality of scan cells. The method and apparatus allows generating and loading N pseudorandom or predetermined stimuli to all the scan cells within the N clock domains in the integrated circuit or circuit assembly during the shift operation, applying an ordered sequence of capture clocks to all the scan cells within the N clock domains during the capture operation, compacting or comparing N output responses of all the scan cells for analysis during the compact/compare operation, and repeating the above process until a predetermined limiting criteria is reached. A computer-aided design (CAD) system is further developed to realize the method and synthesize the apparatus.
    Type: Application
    Filed: February 7, 2002
    Publication date: August 29, 2002
    Inventors: Laung-Terng Wang, Po-Ching Hsu, Shih-Chia Kao, Meng-Chyi Lin, Hsin-Po Wang, Hao-Jan Chao, Xiaoqing Wen