Patents by Inventor Hsin-Wen Su
Hsin-Wen Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12294030Abstract: A semiconductor structure includes a first pair of source/drain features (S/D), a first stack of channel layers connected to the first pair of S/D, a second pair of S/D, and a second stack of channel layers connected to the second pair of S/D. The first pair of S/D each include a first epitaxial layer having a first dopant, a second epitaxial layer having a second dopant and disposed over the first epitaxial layer and connected to the first stack of channel layers, and a third epitaxial layer having a third dopant and disposed over the second epitaxial layer. The second pair of S/D each include a fourth epitaxial layer having a fourth dopant and connected to the second stack of channel layers, and a fifth epitaxial layer having a fifth dopant and disposed over the fourth epitaxial layer. The first dopant through the fourth dopant are of different species.Type: GrantFiled: May 24, 2024Date of Patent: May 6, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Shih-Hao Lin, Chih-Hsuan Chen, Chia-Hao Pao, Chih-Chuan Yang, Chih-Yu Hsu, Hsin-Wen Su, Chia-Wei Chen
-
Publication number: 20250133761Abstract: A semiconductor structure includes a substrate, semiconductor layers, source/drain features, metal oxide layers, and a gate structure. The semiconductor layers are over the substrate and spaced apart from each other in a Z-direction. The source/drain features are over the substrate. The semiconductor layers are between the source/drain features. The metal oxide layers are on top surfaces and bottom surfaces of the semiconductor layers. The gate structure covers and is in contact with center portions of the metal oxide layers on top surfaces and bottom surfaces of the semiconductor layers.Type: ApplicationFiled: December 30, 2024Publication date: April 24, 2025Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Shih-Hao LIN, Chia-Hung CHOU, Chih-Hsuan CHEN, Ping-En CHENG, Hsin-Wen SU, Chien-Chih LIN, Szu-Chi YANG
-
Patent number: 12243912Abstract: Semiconductor devices having improved source/drain features and methods for fabricating such are disclosed herein. An exemplary device includes a semiconductor layer stack disposed over a mesa structure of a substrate. The device further includes a metal gate disposed over the semiconductor layer stack and an inner spacer disposed on the mesa structure of the substrate. The device further includes a first epitaxial source/drain feature and a second epitaxial source/drain feature where the semiconductor layer stack is disposed between the first epitaxial source/drain feature and the second epitaxial source/drain feature. The device further includes a void disposed between the inner spacer and the first epitaxial source/drain feature.Type: GrantFiled: December 15, 2021Date of Patent: March 4, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chih-Chuan Yang, Wen-Chun Keng, Chong-De Lien, Shih-Hao Lin, Hsin-Wen Su, Ping-Wei Wang
-
Patent number: 12218227Abstract: A semiconductor structure includes substrate, semiconductor layers, source/drain features, metal oxide layers, and a gate structure. The semiconductor layers extend in an X-direction and over the substrate. The semiconductor layers are spaced apart from each other in a Z-direction. The source/drain features are on opposite sides of the semiconductor layers in the X-direction. The metal oxide layers cover bottom surfaces of the semiconductor layers. The gate structure wraps around the semiconductor layers and the metal oxide layers. The metal oxide layers are in contact with the gate structure.Type: GrantFiled: August 10, 2023Date of Patent: February 4, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Shih-Hao Lin, Chia-Hung Chou, Chih-Hsuan Chen, Ping-En Cheng, Hsin-Wen Su, Chien-Chih Lin, Szu-Chi Yang
-
Patent number: 12200921Abstract: A memory device includes a substrate, first semiconductor fin, second semiconductor fin, first gate structure, second gate structure, first gate spacer, and a second gate spacer. The first gate structure crosses the first semiconductor fin. The second gate structure crosses the second semiconductor fin, the first gate structure extending continuously from the second gate structure, in which in a top view of the memory device, a width of the first gate structure is greater than a width of the second gate structure. The first gate spacer is on a sidewall of the first gate structure. The second gate spacer extends continuously from the first gate spacer and on a sidewall of the second gate structure, in which in the top view of the memory device, a width of the first gate spacer is less than a width of the second gate spacer.Type: GrantFiled: July 26, 2022Date of Patent: January 14, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Hsin-Wen Su, Chih-Chuan Yang, Shih-Hao Lin, Yu-Kuan Lin, Lien-Jung Hung, Ping-Wei Wang
-
Publication number: 20240413018Abstract: Semiconductor device and the manufacturing method thereof are disclosed herein. An exemplary method comprises forming first and second semiconductor fins in first and second regions of a substrate, respectively; forming first and second dummy gate stacks over the first and second semiconductor fins, respectively, and forming a spacer layer over the first and the second dummy gate stacks; forming a first pattern layer with a thickness along the spacer layer in the first region; form a first source/drain (S/D) trench along the first pattern layer and epitaxially growing a first epitaxial feature therein; removing the first pattern layer to expose the spacer layer; forming a second pattern layer with a different thickness along the spacer layer in the second region; form a second S/D trench along the second pattern layer and epitaxially growing a second epitaxial feature therein; and removing the second pattern layer to expose the spacer layer.Type: ApplicationFiled: July 29, 2024Publication date: December 12, 2024Inventors: Shih-Hao Lin, Tzu-Hsiang Hsu, Chong-De Lien, Szu-Chi Yang, Hsin-Wen Su, Chih-Hsiang Huang
-
Publication number: 20240379851Abstract: A semiconductor device includes a memory macro having a middle strap area between edges of the memory macro and memory bit areas on both sides of the middle strap area. The memory macro includes n-type wells and p-type wells arranged alternately along a first direction with well boundaries between the adjacent n-type and p-type wells. The n-type and the p-type wells extend lengthwise along a second direction and extend continuously through the middle strap area and the memory bit areas. The memory macro includes a first dielectric layer disposed at the well boundaries in the middle strap area and the memory bit areas. From a top view, the first dielectric layer extends along the second direction and fully separates the n-type wells from the p-type wells in the middle strap area. From a cross-sectional view, the first dielectric layer vertically extends into the n-type or the p-type wells.Type: ApplicationFiled: July 23, 2024Publication date: November 14, 2024Inventors: Hsin-Wen Su, Yu-Kuan Lin, Chih-Chuan Yang, Chang-Ta Yang, Shih-Hao Lin
-
Patent number: 12142684Abstract: A semiconductor device includes a memory macro having a middle strap area between edges of the memory macro and memory bit areas on both sides of the middle strap area. The memory macro includes n-type wells and p-type wells arranged alternately along a first direction with well boundaries between the adjacent n-type and p-type wells. The n-type and the p-type wells extend lengthwise along a second direction and extend continuously through the middle strap area and the memory bit areas. The memory macro includes a first dielectric layer disposed at the well boundaries in the middle strap area and the memory bit areas. From a top view, the first dielectric layer extends along the second direction and fully separates the n-type wells from the p-type wells in the middle strap area. From a cross-sectional view, the first dielectric layer vertically extends into the n-type or the p-type wells.Type: GrantFiled: July 26, 2023Date of Patent: November 12, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Hsin-Wen Su, Yu-Kuan Lin, Chih-Chuan Yang, Chang-Ta Yang, Shih-Hao Lin
-
Publication number: 20240371972Abstract: A semiconductor structure includes a stack of semiconductor layers disposed over a protruding portion of a substrate, isolation features disposed over the substrate, wherein a top surface of the protruding portion of the substrate is separated from a bottom surface of the isolation features by a first distance, a metal gate stack interleaved with the stack of semiconductor layers, where a bottom portion of the metal gate stack is disposed on sidewalls of the protruding portion of the substrate and where thickness of the bottom portion of the metal gate stack is defined by a second distance that is less than the first distance, and epitaxial source/drain features disposed adjacent to the metal gate stack.Type: ApplicationFiled: July 12, 2024Publication date: November 7, 2024Inventors: Shih-Hao Lin, Chih-Chuan Yang, Hsin-Wen Su, Jing-Yi Lin, Shang-Rong Li, Chong-De Lien
-
Publication number: 20240373614Abstract: An N-type metal oxide semiconductor (NMOS) transistor includes a first gate and a first spacer structure disposed on a first sidewall of the first gate in a first direction. The first spacer structure has a first thickness in the first direction and measured from an outermost point of an outer surface of the first spacer structure to the first sidewall. A P-type metal oxide semiconductor (PMOS) transistor includes a second gate and a second spacer structure disposed on a second sidewall of the second gate in the first direction and measured from an outermost point of an outer surface of the second spacer structure to the second sidewall. The second spacer structure has a second thickness that is greater than the first thickness. The NMOS transistor is a pass-gate of a static random access memory (SRAM) cell, and the PMOS transistor is a pull-up of the SRAM cell.Type: ApplicationFiled: July 12, 2024Publication date: November 7, 2024Inventors: Shih-Hao Lin, Chih-Chuan Yang, Hsin-Wen Su, Kian-Long Lim, Chien-Chih Lin
-
Publication number: 20240347642Abstract: A method of fabricating a device includes providing a fin extending from a substrate in a device type region, where the fin includes a plurality of semiconductor channel layers. In some embodiments, the method further includes forming a gate structure over the fin. Thereafter, in some examples, the method includes removing a portion of the plurality of semiconductor channel layers within a source/drain region adjacent to the gate structure to form a trench in the source/drain region. In some cases, the method further includes after forming the trench, depositing an adhesion layer within the source/drain region along a sidewall surface of the trench. In various embodiments, and after depositing the adhesion layer, the method further includes epitaxially growing a continuous first source/drain layer over the adhesion layer along the sidewall surface of the trench.Type: ApplicationFiled: June 26, 2024Publication date: October 17, 2024Inventors: Shih-Hao Lin, Chong-De Lien, Chih-Chuan Yang, Chih-Yu Hsu, Ming-Shuan Li, Hsin-Wen Su
-
Patent number: 12112989Abstract: Semiconductor device and the manufacturing method thereof are disclosed herein. An exemplary method comprises forming first and second semiconductor fins in first and second regions of a substrate, respectively; forming first and second dummy gate stacks over the first and second semiconductor fins, respectively, and forming a spacer layer over the first and the second dummy gate stacks; forming a first pattern layer with a thickness along the spacer layer in the first region; form a first source/drain (S/D) trench along the first pattern layer and epitaxially growing a first epitaxial feature therein; removing the first pattern layer to expose the spacer layer; forming a second pattern layer with a different thickness along the spacer layer in the second region; form a second S/D trench along the second pattern layer and epitaxially growing a second epitaxial feature therein; and removing the second pattern layer to expose the spacer layer.Type: GrantFiled: July 26, 2022Date of Patent: October 8, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Shih-Hao Lin, Tzu-Hsiang Hsu, Chong-De Lien, Szu-Chi Yang, Hsin-Wen Su, Chih-Hsiang Huang
-
Publication number: 20240332089Abstract: Methods of forming a semiconductor device are provided. A method according to the present disclosure includes forming, over a workpiece, a dummy gate stack comprising a first semiconductor material, depositing a first dielectric layer over the dummy gate stack using a first process, implanting the workpiece with a second semiconductor material different from the first semiconductor material, annealing the dummy gate stack after the implanting, and replacing the dummy gate stack with a metal gate stack.Type: ApplicationFiled: June 13, 2024Publication date: October 3, 2024Inventors: Shih-Hao Lin, Jui-Lin Chen, Hsin-Wen Su, Kian-Long Lim, Bwo-Ning Chen, Chih-Hsuan Chen
-
Publication number: 20240324245Abstract: A magnetic device structure is provided. In some embodiments, the structure includes one or more first transistors, a magnetic device disposed over the one or more first transistors, a plurality of magnetic columns surrounding sides of the one or more first transistors and the magnetic device, a first magnetic layer disposed over the magnetic device and in contact with the plurality of magnetic columns, and a second magnetic layer disposed below the one or more first transistors and in contact with the plurality of magnetic columns.Type: ApplicationFiled: June 3, 2024Publication date: September 26, 2024Inventors: Jui-Lin CHEN, Hsin-Wen SU, Shih-Hao LIN, Po-Sheng LU, Chenchen Jacob WANG, Yuan Hao CHANG, Ping-Wei WANG
-
Patent number: 12101921Abstract: An N-type metal oxide semiconductor (NMOS) transistor includes a first gate and a first spacer structure disposed on a first sidewall of the first gate in a first direction. The first spacer structure has a first thickness in the first direction and measured from an outermost point of an outer surface of the first spacer structure to the first sidewall. A P-type metal oxide semiconductor (PMOS) transistor includes a second gate and a second spacer structure disposed on a second sidewall of the second gate in the first direction and measured from an outermost point of an outer surface of the second spacer structure to the second sidewall. The second spacer structure has a second thickness that is greater than the first thickness. The NMOS transistor is a pass-gate of a static random access memory (SRAM) cell, and the PMOS transistor is a pull-up of the SRAM cell.Type: GrantFiled: July 22, 2022Date of Patent: September 24, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Shih-Hao Lin, Chih-Chuan Yang, Hsin-Wen Su, Kian-Long Lim, Chien-Chih Lin
-
Publication number: 20240313119Abstract: A semiconductor structure includes a first pair of source/drain features (S/D), a first stack of channel layers connected to the first pair of S/D, a second pair of S/D, and a second stack of channel layers connected to the second pair of S/D. The first pair of S/D each include a first epitaxial layer having a first dopant, a second epitaxial layer having a second dopant and disposed over the first epitaxial layer and connected to the first stack of channel layers, and a third epitaxial layer having a third dopant and disposed over the second epitaxial layer. The second pair of S/D each include a fourth epitaxial layer having a fourth dopant and connected to the second stack of channel layers, and a fifth epitaxial layer having a fifth dopant and disposed over the fourth epitaxial layer. The first dopant through the fourth dopant are of different species.Type: ApplicationFiled: May 24, 2024Publication date: September 19, 2024Inventors: Shih-Hao Lin, Chih-Hsuan Chen, Chia-Hao Pao, Chih-Chuan Yang, Chih-Yu Hsu, Hsin-Wen Su, Chia-Wei Chen
-
Patent number: 12080780Abstract: A semiconductor structure includes a stack of semiconductor layers disposed over a protruding portion of a substrate, isolation features disposed over the substrate, wherein a top surface of the protruding portion of the substrate is separated from a bottom surface of the isolation features by a first distance, a metal gate stack interleaved with the stack of semiconductor layers, where a bottom portion of the metal gate stack is disposed on sidewalls of the protruding portion of the substrate and where thickness of the bottom portion of the metal gate stack is defined by a second distance that is less than the first distance, and epitaxial source/drain features disposed adjacent to the metal gate stack.Type: GrantFiled: August 30, 2021Date of Patent: September 3, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Shih-Hao Lin, Chih-Chuan Yang, Hsin-Wen Su, Jing-Yi Lin, Shang-Rong Li, Chong-De Lien
-
Publication number: 20240265985Abstract: A semiconductor memory device includes a first word line formed over a first active region. In some embodiments, a first metal line is disposed over and perpendicular to the first word line, where the first metal line is electrically connected to the first word line using a first conductive via, and where the first conductive via is disposed over the first active region. In some examples, the semiconductor memory device further includes a second metal line and a third metal line both parallel to the first metal line and disposed on opposing sides of the first metal line, where the second metal line is electrically connected to a source/drain region of the first active region using a second conductive via, and where the third metal line is electrically connected to the source/drain region of the first active region using a third conductive via.Type: ApplicationFiled: March 22, 2024Publication date: August 8, 2024Inventors: Hsin-Wen SU, Kian-Long LIM, Wen-Chun KENG, Chang-Ta YANG, Shih-Hao LIN
-
Patent number: 12040405Abstract: A method of fabricating a device includes providing a fin extending from a substrate in a device type region, where the fin includes a plurality of semiconductor channel layers. In some embodiments, the method further includes forming a gate structure over the fin. Thereafter, in some examples, the method includes removing a portion of the plurality of semiconductor channel layers within a source/drain region adjacent to the gate structure to form a trench in the source/drain region. In some cases, the method further includes after forming the trench, depositing an adhesion layer within the source/drain region along a sidewall surface of the trench. In various embodiments, and after depositing the adhesion layer, the method further includes epitaxially growing a continuous first source/drain layer over the adhesion layer along the sidewall surface of the trench.Type: GrantFiled: May 13, 2021Date of Patent: July 16, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Shih-Hao Lin, Chong-De Lien, Chih-Chuan Yang, Chih-Yu Hsu, Ming-Shuan Li, Hsin-Wen Su
-
Patent number: 12027425Abstract: Methods of forming a semiconductor device are provided. A method according to the present disclosure includes forming, over a workpiece, a dummy gate stack comprising a first semiconductor material, depositing a first dielectric layer over the dummy gate stack using a first process, implanting the workpiece with a second semiconductor material different from the first semiconductor material, annealing the dummy gate stack after the implanting, and replacing the dummy gate stack with a metal gate stack.Type: GrantFiled: July 29, 2022Date of Patent: July 2, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Shih-Hao Lin, Jui-Lin Chen, Hsin-Wen Su, Kian-Long Lim, Bwo-Ning Chen, Chih-Hsuan Chen