Patents by Inventor Hsin YU

Hsin YU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230402092
    Abstract: Various implementations described herein are directed to a device having memory circuitry with bitlines coupled to an array of bitcells. The device may include precharge circuitry that precharges the bitlines during modes of operation including a standby mode of operation and an active mode of operation. In some instances, the precharge circuitry may include a low power mode of operation that prevents precharge of the bitlines during the standby mode of operation.
    Type: Application
    Filed: June 8, 2022
    Publication date: December 14, 2023
    Inventors: Rahul Mathur, Hsin-Yu Chen, Phani Raja Bhushan Chalasani, Kyung Woo Kim, Edward Martin McCombs, JR.
  • Publication number: 20230400699
    Abstract: Disclosed is a cost-effective method to fabricate a multifunctional collimator structure for contact image sensors to filter ambient infrared light to reduce noises. In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; a plurality of via holes; and a conductive layer, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction, and wherein the conductive layer is formed over at least one of the following: the first surface of the first dielectric layer and a portion of sidewalls of each of the plurality of via holes, and wherein the conductive layer is configured so as to allow the optical collimator to filter light in a range of wavelengths.
    Type: Application
    Filed: August 8, 2023
    Publication date: December 14, 2023
    Inventors: Hsin-Yu CHEN, Yen-Chiang LIU, June-Jie CHIOU, Jia-Syuan LI, You-Cheng JHANG, Shin-Hua CHEN, LAVANYA SANAGAVARAPU, Han-Zong PAN, Chun-Peng LI, Chia-Chun HUNG, Ching-Hsiang HU, Wei-Ding WU, Jui-Chun WENG, Ji-Hong CHIANG, Hsi-Cheng HSU
  • Publication number: 20230401885
    Abstract: Optical sensors and their making methods are described herein. In some embodiments, a described sensing apparatus includes: an image sensor; a collimator above the image sensor, wherein the collimator includes an array of apertures; and an optical filtering layer above the collimator, wherein the optical filtering layer is configured to filter a portion of light to be transmitted into the array of apertures.
    Type: Application
    Filed: August 10, 2023
    Publication date: December 14, 2023
    Inventors: You-Cheng JHANG, Han-Zong PAN, Wei-Ding WU, Jiu-Chun WENG, Hsin-Yu CHEN, Cheng-San CHOU, Chin-Min LIN
  • Publication number: 20230384664
    Abstract: A portion of a buffer layer on a backside of a substrate of a photomask assembly may be removed prior to formation of one or more capping layers on the backside of the substrate. The one or more capping layers may be formed directly on the backside of the substrate where the buffer layer is removed from the substrate, and a hard mask layer may be formed directly on the one or more capping layers. The one or more capping layers may include a low-stress material to promote adhesion between the one or more capping layers and the substrate, and to reduce and/or minimize peeling and delamination of the capping layer(s) from the substrate. This may reduce the likelihood of damage to the pellicle layer and/or other components of the photomask assembly and/or may increase the yield of an exposure process in which the photomask assembly is used.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 30, 2023
    Inventors: Kuo-Hao LEE, Hsi-Cheng HSU, Jui-Chun WENG, Han-Zong PAN, Hsin-Yu CHEN, You-Cheng JHANG
  • Publication number: 20230386976
    Abstract: A semiconductor device includes a through-substrate via extending from a frontside to a backside of a semiconductor substrate. The through-substrate via includes a concave or a convex portion adjacent to the backside of the semiconductor substrate. An isolation film is formed on the backside of the semiconductor substrate. A conductive layer includes a first portion formed on the concave or convex portion of the through substrate via and a second portion formed on the isolation film. A passivation layer partially covers the conductive layer.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Yung-Chi Lin, Hsin-Yu Chen, Ming-Tsu Chung, HsiaoYun Lo, Hong-Ye Shih, Chia-Yin Chen, Ku-Feng Yang, Tsang-Jiuh Wu, Wen-Chih Chiou
  • Patent number: 11830866
    Abstract: Manufacturing method of semiconductor package includes following steps. Bottom package is provided. The bottom package includes a die and a redistribution structure electrically connected to die. A first top package and a second top package are disposed on a surface of the redistribution structure further away from the die. An underfill is formed into the space between the first and second top packages and between the first and second top packages and the bottom package. The underfill covers at least a side surface of the first top package and a side surface of the second top package. A hole is opened in the underfill within an area overlapping with the die between the side surface of the first top package and the side surface of the second top package. A thermally conductive block is formed in the hole by filling the hole with a thermally conductive material.
    Type: Grant
    Filed: April 14, 2022
    Date of Patent: November 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Wei Chen, Chih-Hua Chen, Hsin-Yu Pan, Hao-Yi Tsai, Lipu Kris Chuang, Tin-Hao Kuo
  • Publication number: 20230378151
    Abstract: Manufacturing method of semiconductor package includes following steps. Bottom package is provided. The bottom package includes a die and a redistribution structure electrically connected to die. A first top package and a second top package are disposed on a surface of the redistribution structure further away from the die. An underfill is formed into the space between the first and second top packages and between the first and second top packages and the bottom package. The underfill covers at least a side surface of the first top package and a side surface of the second top package. A hole is opened in the underfill within an area overlapping with the die between the side surface of the first top package and the side surface of the second top package. A thermally conductive block is formed in the hole by filling the hole with a thermally conductive material.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Wei Chen, Chih-Hua Chen, Hsin-Yu Pan, Hao-Yi Tsai, Lipu Kris Chuang, Tin-Hao Kuo
  • Publication number: 20230378152
    Abstract: A package structure includes an insulating encapsulation, a semiconductor die, and a filter structure. The semiconductor die is encapsulated in the insulating encapsulation. The filter structure is electrically coupled to the semiconductor die, wherein the filter structure includes a patterned metallization layer with a pattern having a double-spiral having aligned centroids thereof.
    Type: Application
    Filed: August 2, 2023
    Publication date: November 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sen-Kuei Hsu, Hsin-Yu Pan, Ming-Hsien Tsai
  • Patent number: 11824054
    Abstract: A package structure includes an insulating encapsulation, a semiconductor die, and a filter structure. The semiconductor die is encapsulated in the insulating encapsulation. The filter structure is electrically coupled to the semiconductor die, wherein the filter structure includes a patterned metallization layer with a pattern having a double-spiral having aligned centroids thereof.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: November 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sen-Kuei Hsu, Hsin-Yu Pan, Ming-Hsien Tsai
  • Patent number: 11823979
    Abstract: A semiconductor device includes a through-substrate via extending from a frontside to a backside of a semiconductor substrate. The through-substrate via includes a concave or a convex portion adjacent to the backside of the semiconductor substrate. An isolation film is formed on the backside of the semiconductor substrate. A conductive layer includes a first portion formed on the concave or convex portion of the through substrate via and a second portion formed on the isolation film. A passivation layer partially covers the conductive layer.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yung-Chi Lin, Hsin-Yu Chen, Ming-Tsu Chung, HsiaoYun Lo, Hong-Ye Shih, Chia-Yin Chen, Ku-Feng Yang, Tsang-Jiuh Wu, Wen-Chih Chiou
  • Publication number: 20230369316
    Abstract: The present disclosure provides electrostatic discharge circuits and structures and methods for operating the electrostatic discharge circuits and structures. A circuit includes a first transistor and a second transistor. The first transistor includes a drain, a source, a gate, and a bulk. The drain of the first transistor is connected to a first terminal. The source of the first transistor is connected to receive a first voltage. The gate and the bulk of the first transistor is connected to receive a second voltage. The second transistor includes a drain, a source, a gate, and a bulk. The source, the gate, and the bulk of the second transistor is connected to receive the second voltage. The drain of the second transistor is connected to the first terminal. In response to the terminal reaching a trigger voltage, the first transistor is configured to be turned on.
    Type: Application
    Filed: July 21, 2023
    Publication date: November 16, 2023
    Inventors: TZU-HENG CHANG, HSIN-YU CHEN, PIN-HSIN CHANG
  • Publication number: 20230369263
    Abstract: A semiconductor package includes a substrate, a redistribution circuit layer, and a protective layer. The redistribution circuit layer is over the substrate and includes a plurality of functional pads electrically connected to the substrate, and a dummy pad pattern electrically disconnected from the plurality of functional pads, wherein the dummy pad pattern includes a plurality of pad portions connected to one another. The protective layer is disposed over the redistribution circuit layer and comprising a plurality of first openings spaced apart from one another and respectively revealing the plurality of pad portions.
    Type: Application
    Filed: May 11, 2022
    Publication date: November 16, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kris Lipu Chuang, Hsiu-Jen Lin, Tzu-Sung Huang, Hsin-Yu Pan
  • Publication number: 20230361078
    Abstract: A semiconductor package includes a redistribution structure, at least one semiconductor device, a heat dissipation component, and an encapsulating material. The at least one semiconductor device is disposed on and electrically connected to the redistribution structure. The heat dissipation component is disposed on the redistribution structure and includes a concave portion for receiving the at least one semiconductor device and an extending portion connected to the concave portion and contacting the redistribution structure, wherein the concave portion contacts the at least one semiconductor device. The encapsulating material is disposed over the redistribution structure, wherein the encapsulating material fills the concave portion and encapsulates the at least one semiconductor device.
    Type: Application
    Filed: July 18, 2023
    Publication date: November 9, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Wei Chen, Chih-Hua Chen, Hsin-Yu Pan, Hao-Yi Tsai, Lipu Kris Chuang, Tin-Hao Kuo
  • Publication number: 20230359056
    Abstract: Disclosed is a method to fabricate a multifunctional collimator structure In one embodiment, an optical collimator, includes: a dielectric layer; a substrate; and a plurality of via holes, wherein the dielectric layer is formed over the substrate, wherein the plurality of via holes are configured as an array along a lateral direction of a first surface of the dielectric layer, wherein each of the plurality of via holes extends through the dielectric layer and the substrate from the first surface of the dielectric layer to a second surface of the substrate in a vertical direction, wherein the substrate has a bulk impurity doping concentration equal to or greater than 1×1019 per cubic centimeter (cm?3) and a first thickness, and wherein the bulk impurity doping concentration and the first thickness of the substrate are configured so as to allow the optical collimator to filter light in a range of wavelengths.
    Type: Application
    Filed: July 14, 2023
    Publication date: November 9, 2023
    Inventors: Hsin-Yu CHEN, Chun-Peng LI, Chia-Chun HUNG, Ching-Hsiang HU, Wei-Ding WU, Jui-Chun WENG, JI-Hong CHIANG, Yen-Chiang LIU, Jiun-Jie CHIOU, Li-Yang TU, Jia-Syuan LI, You-Cheng JHANG, Shin-Hua CHEN, Lavanya SANAGAVARAPU, Han-Zong PAN, Hsi-Cheng HSU
  • Publication number: 20230352445
    Abstract: Alignment of devices formed on substrates that are to be bonded may be achieved through the use of scribe lines between the devices, where the scribe lines progressively increase or decrease in size from a center to an edge of one or more of the substrates to compensate for differences in the thermal expansion rates of the substrates. The devices on the substrates are brought into alignment as the substrates are heated during a bonding operation due to the progressively increased or decreased sizes of the scribe lines. The scribe lines may be arranged in a single direction in a substrate to compensate for thermal expansion along a single axis of the substrate or may be arranged in a plurality of directions to compensate for actinomorphic thermal expansion.
    Type: Application
    Filed: July 5, 2023
    Publication date: November 2, 2023
    Inventors: Hsi-Cheng HSU, Jui-Chun WENG, Ching-Hsiang HU, Ji-Hong CHIANG, Kuo-Hao LEE, Chia-Yu LIN, Chia-Chun HUNG, Yen-Chieh TU, Chien-Tai SU, Hsin-Yu CHEN
  • Publication number: 20230343764
    Abstract: A package structure including a chip stacking structure, a thermal enhance component and a first insulating encapsulant is provided. The thermal enhance component is stacked over and thermally coupled to the chip stacking structure, wherein a first lateral dimension of the thermal enhance component is greater than a second lateral dimension of the chip stacking structure. The first insulating encapsulant laterally encapsulates the thermal enhance component and the chip stacking structure.
    Type: Application
    Filed: April 25, 2022
    Publication date: October 26, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lipu Kris Chuang, Hsin-Yu Pan, Tzu-Sung Huang
  • Patent number: 11798936
    Abstract: The present disclosure provides electrostatic discharge circuits and structures and methods for operating the electrostatic discharge circuits and structures. A circuit includes a first transistor and a second transistor. The first transistor includes a drain, a source, a gate, and a bulk. The drain of the first transistor is connected to a first terminal. The source of the first transistor is connected to receive a first voltage. The gate and the bulk of the first transistor is connected to receive a second voltage. The second transistor includes a drain, a source, a gate, and a bulk. The source, the gate, and the bulk of the second transistor is connected to receive the second voltage. The drain of the second transistor is connected to the first terminal. In response to the terminal reaching a trigger voltage, the first transistor is configured to be turned on.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: October 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Tzu-Heng Chang, Hsin-Yu Chen, Pin-Hsin Chang
  • Publication number: 20230336438
    Abstract: The technology disclosed provides an interactive GUI driven by natural language questions and intuitive controls that support follow-up queries. One features a table-graph that links responsive series of data to graph elements. Individual rows of data in the table can be selected or deselected for display. The rows can be displayed in a single graph for individual graphs. Averages and other statistical measures can be calculated and graphed responsive to selectable controls, without formulas for series calculations. Another feature is so-called Liveboards that include multiple natural language questions and data views produced from executing queries derived from the questions, adapted to data available to a particular user, especially when the user's organization is different from an origin organization that generated the Liveboard.
    Type: Application
    Filed: September 12, 2022
    Publication date: October 19, 2023
    Applicant: Insight Engines, Inc.
    Inventors: Grant M. WERNICK, Darien Fitzgerald KINDLUND, Gururaj SINGH, Hsin-Yu LIN, Edson Julius OCAMPO ALMACHAR, Jacob A. PERKINS
  • Patent number: 11790977
    Abstract: The present invention provides a memory controller including a plurality of channels. A first channel of the plurality of channels includes a first transmitter, a first pull-up variable resistor and a first pull-down variable resistor, wherein the first transmitter is configured to generate a first data signal to a memory module, the first pull-up variable resistor is coupled between a supply voltage and an output terminal of the first transmitter, and the first pull-down variable resistor is coupled to the output terminal of the first transmitter. The control circuit is coupled to the plurality of channels, and is configured to control the first pull-up variable resistor and/or the first pull-down variable resistor according to a reference voltage used by the memory module.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: October 17, 2023
    Assignee: MEDIATEK INC.
    Inventors: Chung-Hwa Wu, Ming-Hsin Yu
  • Patent number: 11789360
    Abstract: A portion of a buffer layer on a backside of a substrate of a photomask assembly may be removed prior to formation of one or more capping layers on the backside of the substrate. The one or more capping layers may be formed directly on the backside of the substrate where the buffer layer is removed from the substrate, and a hard mask layer may be formed directly on the one or more capping layers. The one or more capping layers may include a low-stress material to promote adhesion between the one or more capping layers and the substrate, and to reduce and/or minimize peeling and delamination of the capping layer(s) from the substrate. This may reduce the likelihood of damage to the pellicle layer and/or other components of the photomask assembly and/or may increase the yield of an exposure process in which the photomask assembly is used.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: October 17, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Hao Lee, Hsi-Cheng Hsu, Jui-Chun Weng, Han-Zong Pan, Hsin-Yu Chen, You-Cheng Jhang