Patents by Inventor Hsu-Ting Huang

Hsu-Ting Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11947254
    Abstract: A method for mask data synthesis and mask making includes calibrating an optical proximity correction (OPC) model by adjusting a plurality of parameters including a first parameter and a second parameter, wherein the first parameter indicates a long-range effect caused by an electron-beam lithography tool for making a mask used to manufacture a structure, and the second parameter indicates a geometric feature of a structure or a manufacturing process to make the structure, generating a device layout, calculating a first grid pattern density map of the device layout, generating a long-range correction map, at least based on the calibrated OPC model and the first grid pattern density map of the device layout, and performing an OPC to generate a corrected mask layout, at least based on the generated long-range correction map and the calibrated OPC model.
    Type: Grant
    Filed: August 1, 2022
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsu-Ting Huang, Shih-Hsiang Lo, Ru-Gun Liu
  • Publication number: 20240096998
    Abstract: The present disclosure describes a method for forming metallization layers that include a ruthenium metal liner and a cobalt metal fill. The method includes depositing a first dielectric on a substrate having a gate structure and source/drain (S/D) structures, forming an opening in the first dielectric to expose the S/D structures, and depositing a ruthenium metal on bottom and sidewall surfaces of the opening. The method further includes depositing a cobalt metal on the ruthenium metal to fill the opening, reflowing the cobalt metal, and planarizing the cobalt and ruthenium metals to form S/D conductive structures with a top surface coplanar with a top surface of the first dielectric.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuen-Shin LIANG, Chij-chien CHI, Yi-Ying LIU, Chia-Hung CHU, Hsu-Kai CHANG, Cheng-Wei CHANG, Chein-Shun LIAO, Keng-chu LIN, KAi-Ting HUANG
  • Publication number: 20240061344
    Abstract: A method for manufacturing a lithographic mask for an integrated circuit includes performing an optical proximity correction (OPC) process to an integrated circuit mask layout to produce a corrected mask layout. The method further includes performing an inverse lithographic technology (ILT) process to the corrected mask layout to enhance the corrected mask layout to produce an OPC-ILT-enhanced mask layout. The method also includes performing an inverse lithographic technology (ILT) process to the corrected mask layout to enhance the corrected mask layout to produce an OPC-ILT-enhanced mask layout.
    Type: Application
    Filed: November 1, 2023
    Publication date: February 22, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsu-Ting HUANG, Tung-Chin WU, Shih-Hsiang LO, Chih-Ming LAI, Jue-Chin YU, Ru-Gun LIU, Chin-Hsiang LIN
  • Patent number: 11841619
    Abstract: A method for manufacturing a lithographic mask for an integrated circuit includes performing an optical proximity correction (OPC) process to an integrated circuit mask layout to produce a corrected mask layout. The method further includes performing an inverse lithographic technology (ILT) process to the corrected mask layout to enhance the corrected mask layout to produce an OPC-ILT-enhanced mask layout. The method also includes performing an inverse lithographic technology (ILT) process to the corrected mask layout to enhance the corrected mask layout to produce an OPC-ILT-enhanced mask layout.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: December 12, 2023
    Assignee: TAIWAN SEMINCONDUTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsu-Ting Huang, Tung-Chin Wu, Shih-Hsiang Lo, Chih-Ming Lai, Jue-Chin Yu, Ru-Gun Liu, Chin-Hsiang Lin
  • Publication number: 20230333486
    Abstract: A method of manufacturing a semiconductor device includes dividing a number of dies along an x axis in a die matrix in each exposure field in an exposure field matrix delineated on the semiconductor substrate, wherein the x axis is parallel to one edge of a smallest rectangle enclosing the exposure field matrix. A number of dies is divided along a y axis in the die matrix, wherein the y axis is perpendicular to the x axis. Sequences SNx0, SNx1, SNx, SNxr, SNy0, SNy1, SNy, and SNyr are formed. p*(Nbx+1)-2 stepping operations are performed in a third direction and first sequence exposure/stepping/exposure operations and second sequence exposure/stepping/exposure operations are performed alternately between any two adjacent stepping operations as well as before a first stepping operation and after a last stepping operation. A distance of each stepping operation in order follows the sequence SNx.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 19, 2023
    Inventors: Shinn-Sheng YU, Ru-Gun LIU, Hsu-Ting HUANG, Kenji YAMAZOE, Minfeng CHEN, Shuo-Yen CHOU, Chin-Hsiang LIN
  • Patent number: 11709435
    Abstract: A method of manufacturing a semiconductor device includes dividing a number of dies along an x axis in a die matrix in each exposure field in an exposure field matrix delineated on the semiconductor substrate, wherein the x axis is parallel to one edge of a smallest rectangle enclosing the exposure field matrix. A number of dies is divided along a y axis in the die matrix, wherein the y axis is perpendicular to the x axis. Sequences SNx0, SNx1, SNx, SNxr, SNy0, SNy1, SNy, and SNyr are formed. p*(Nbx+1)?2 stepping operations are performed in a third direction and first sequence exposure/stepping/exposure operations and second sequence exposure/stepping/exposure operations are performed alternately between any two adjacent stepping operations as well as before a first stepping operation and after a last stepping operation. A distance of each stepping operation in order follows the sequence SNx.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: July 25, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shinn-Sheng Yu, Ru-Gun Liu, Hsu-Ting Huang, Kenji Yamazoe, Minfeng Chen, Shuo-Yen Chou, Chin-Hsiang Lin
  • Patent number: 11675958
    Abstract: In a method of optimizing a lithography model in a lithography simulation, a mask is formed in accordance with a given layout, a wafer is printed using the mask, a pattern formed on the printed wafer is measured, a wafer pattern is simulated using a wafer edge bias table and the given mask layout, a difference between the simulated wafer pattern and the measured pattern is obtained, and the wafer edge table is adjusted according to the difference.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: June 13, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Fu An Tien, Hsu-Ting Huang, Ru-Gun Liu, Shih-Hsiang Lo
  • Patent number: 11662657
    Abstract: A method for manufacturing a photo mask for a semiconductor device includes receiving a plurality of hotspot regions of a mask layout corresponding to the semiconductor device. The method further includes classifying the plurality of hotspot regions into two or more hotspot groups such that same or similar hotspot regions are classified into same hotspot groups. The hotspot groups includes a first hotspot group that has at least two hotspot regions. The method also includes correcting a first hotspot region of the first hotspot group to generate an enhancement of the first hotspot region and correcting other hotspot regions of the first hotspot group using the enhancement of the first hotspot region to generate enhancements of other hotspot regions of the first hotspot group.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: May 30, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Fu An Tien, Hsu-Ting Huang, Ru-Gun Liu
  • Publication number: 20220373878
    Abstract: A method for mask data synthesis and mask making includes calibrating an optical proximity correction (OPC) model by adjusting a plurality of parameters including a first parameter and a second parameter, wherein the first parameter indicates a long-range effect caused by an electron-beam lithography tool for making a mask used to manufacture a structure, and the second parameter indicates a geometric feature of a structure or a manufacturing process to make the structure, generating a device layout, calculating a first grid pattern density map of the device layout, generating a long-range correction map, at least based on the calibrated OPC model and the first grid pattern density map of the device layout, and performing an OPC to generate a corrected mask layout, at least based on the generated long-range correction map and the calibrated OPC model.
    Type: Application
    Filed: August 1, 2022
    Publication date: November 24, 2022
    Inventors: Hsu-Ting HUANG, Shih-Hsiang LO, Ru-Gun LIU
  • Publication number: 20220365438
    Abstract: An extreme ultraviolet lithography (EUVL) method includes providing at least two phase-shifting mask areas having a same pattern. A resist layer is formed over a substrate. An optimum exposure dose of the resist layer is determined, and a latent image is formed on a same area of the resist layer by a multiple exposure process. The multiple exposure process includes a plurality of exposure processes and each of the plurality of exposure processes uses a different phase-shifting mask area from the at least two phase-shifting mask areas having a same pattern.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 17, 2022
    Inventors: Shinn-Sheng YU, Ru-Gun LIU, Hsu-Ting HUANG, Chin-Hsiang LIN
  • Publication number: 20220308439
    Abstract: A method for manufacturing a photo mask for a semiconductor device includes receiving a plurality of hotspot regions of a mask layout corresponding to the semiconductor device. The method further includes classifying the plurality of hotspot regions into two or more hotspot groups such that same or similar hotspot regions are classified into same hotspot groups. The hotspot groups includes a first hotspot group that has at least two hotspot regions. The method also includes correcting a first hotspot region of the first hotspot group to generate an enhancement of the first hotspot region and correcting other hotspot regions of the first hotspot group using the enhancement of the first hotspot region to generate enhancements of other hotspot regions of the first hotspot group.
    Type: Application
    Filed: June 13, 2022
    Publication date: September 29, 2022
    Inventors: Fu An TIEN, Hsu-Ting HUANG, Ru-Gun LIU
  • Patent number: 11429027
    Abstract: An extreme ultraviolet lithography (EUVL) method includes providing at least two phase-shifting mask areas having a same pattern. A resist layer is formed over a substrate. An optimum exposure dose of the resist layer is determined, and a latent image is formed on a same area of the resist layer by a multiple exposure process. The multiple exposure process includes a plurality of exposure processes and each of the plurality of exposure processes uses a different phase-shifting mask area from the at least two phase-shifting mask areas having a same pattern.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: August 30, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shinn-Sheng Yu, Ru-Gun Liu, Hsu-Ting Huang, Chin-Hsiang Lin
  • Publication number: 20220260931
    Abstract: A method of manufacturing a semiconductor device includes dividing a number of dies along an x axis in a die matrix in each exposure field in an exposure field matrix delineated on the semiconductor substrate, wherein the x axis is parallel to one edge of a smallest rectangle enclosing the exposure field matrix. A number of dies is divided along a y axis in the die matrix, wherein the y axis is perpendicular to the x axis. Sequences SNx0, SNx1, SNx, SNxr, SNy0, SNy1, SNy, and SNyr are formed. p*(Nbx+1)?2 stepping operations are performed in a third direction and first sequence exposure/stepping/exposure operations and second sequence exposure/stepping/exposure operations are performed alternately between any two adjacent stepping operations as well as before a first stepping operation and after a last stepping operation. A distance of each stepping operation in order follows the sequence SNx.
    Type: Application
    Filed: April 29, 2022
    Publication date: August 18, 2022
    Inventors: Shinn-Sheng YU, Ru-Gun LIU, Hsu-Ting HUANG, Kenji YAMAZOE, Minfeng CHEN, Shuo-Yen CHOU, Chin-Hsiang LIN
  • Patent number: 11415890
    Abstract: A method for mask data synthesis and mask making includes calibrating an optical proximity correction (OPC) model by adjusting a plurality of parameters including a first parameter and a second parameter, wherein the first parameter indicates a long-range effect caused by an electron-beam lithography tool for making a mask used to manufacture a structure, and the second parameter indicates a geometric feature of a structure or a manufacturing process to make the structure, generating a device layout, calculating a first grid pattern density map of the device layout, generating a long-range correction map, at least based on the calibrated OPC model and the first grid pattern density map of the device layout, and performing an OPC to generate a corrected mask layout, at least based on the generated long-range correction map and the calibrated OPC model.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: August 16, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsu-Ting Huang, Shih-Hsiang Lo, Ru-Gun Liu
  • Patent number: 11360379
    Abstract: A method for manufacturing a photo mask for a semiconductor device includes receiving a plurality of hotspot regions of a mask layout corresponding to the semiconductor device. The method further includes classifying the plurality of hotspot regions into two or more hotspot groups such that same or similar hotspot regions are classified into same hotspot groups. The hotspot groups includes a first hotspot group that has at least two hotspot regions. The method also includes correcting a first hotspot region of the first hotspot group to generate an enhancement of the first hotspot region and correcting other hotspot regions of the first hotspot group using the enhancement of the first hotspot region to generate enhancements of other hotspot regions of the first hotspot group.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: June 14, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Fu An Tien, Hsu-Ting Huang, Ru-Gun Liu
  • Patent number: 11320747
    Abstract: Photolithography apparatus includes a radiation source, a mask to modify radiation from the radiation source so the radiation exposes photoresist layer disposed on a semiconductor substrate in patternwise manner, a wafer stage, and a controller. The wafer stage supports the semiconductor substrate. The controller determines target total exposure dose for the photoresist layer and target focus position for the photoresist layer; and controls exposure of first portion of the photoresist layer to first exposure dose of radiation at first focus position using first portion of the mask, moving the semiconductor substrate relative to the mask; and exposure of the first portion of the photoresist layer to second exposure dose of radiation using second portion of the mask at second focus position, and exposure of second portion of the photoresist layer to the second exposure dose at the second focus position using the first portion of the mask.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: May 3, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shinn-Sheng Yu, Ru-Gun Liu, Hsu-Ting Huang, Kenji Yamazoe, Minfeng Chen, Shuo-Yen Chou, Chin-Hsiang Lin
  • Patent number: 11204897
    Abstract: A computer-implemented method includes executing, using a computer, a process including a main thread that receives a layout file. The layout file includes a first plurality of tags and compressed information blocks. Each tag of the first plurality is associated with a compressed information block. The method further includes decompressing the compressed information blocks using sub-threads and thereby obtaining decompressed information blocks. The sub-threads are created by the main thread, and each sub-thread corresponds to a compressed information block. The decompressed information blocks are combined into decompressed layout information. The decompressed file is partitioned and each partition is provided to a node of a distributed computing system for performing layout correction.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: December 21, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Fu An Tien, Changsheng Ying, Hsu-Ting Huang, Ru-Gun Liu
  • Publication number: 20210373443
    Abstract: A method for manufacturing a lithographic mask for an integrated circuit includes performing an optical proximity correction (OPC) process to an integrated circuit mask layout to produce a corrected mask layout. The method further includes performing an inverse lithographic technology (ILT) process to the corrected mask layout to enhance the corrected mask layout to produce an OPC-ILT-enhanced mask layout. The method also includes performing an inverse lithographic technology (ILT) process to the corrected mask layout to enhance the corrected mask layout to produce an OPC-ILT-enhanced mask layout.
    Type: Application
    Filed: August 16, 2021
    Publication date: December 2, 2021
    Inventors: Hsu-Ting HUANG, Tung-Chin WU, Shih-Hsiang LO, Chih-Ming LAI, Jue-Chin YU, Ru-Gun LIU, Chin-Hsiang LIN
  • Publication number: 20210365625
    Abstract: Systems and methods are provided for generating test patterns. In various embodiments, systems and methods are provided in which machine learning is utilized to generate the test patterns in a manner so that the test patterns conform with design rule check (DRC) specified for a particular semiconductor manufacturing process or for particular types of devices. A test pattern generation system includes test pattern generation circuitry which receives a noise image. The test pattern generation generates a pattern image based on the noise image, and further generates a test pattern based on the pattern image. The test pattern is representative of geometric shapes of an electronic device design layout that is free of design rule check violations.
    Type: Application
    Filed: August 9, 2021
    Publication date: November 25, 2021
    Inventors: Fu-An Tien, Hsu-Ting Huang, Ru-Gun Liu
  • Publication number: 20210357571
    Abstract: In a method of optimizing a lithography model in a lithography simulation, a mask is formed in accordance with a given layout, a wafer is printed using the mask, a pattern formed on the printed wafer is measured, a wafer pattern is simulated using a wafer edge bias table and the given mask layout, a difference between the simulated wafer pattern and the measured pattern is obtained, and the wafer edge table is adjusted according to the difference.
    Type: Application
    Filed: July 30, 2021
    Publication date: November 18, 2021
    Inventors: Fu An TIEN, Hsu-Ting HUANG, Ru-Gun LIU, Shih-Hsiang LO