Patents by Inventor Hsu Yu

Hsu Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190237564
    Abstract: A transistor including a source and a drain each formed in a substrate; a channel disposed in the substrate between the source and drain, wherein the channel includes opposing sidewalls with a distance between the opposing sidewalls defining a width dimension of the channel and wherein the opposing sidewalls extend a distance below a surface of the substrate; and a gate electrode on the channel. A method of forming a transistor including forming a source and a drain in an area of a substrate; forming a source contact on the source and a drain contact on the drain; after forming the source contact and the drain contact, forming a channel in the substrate in an area between the source and drain, the channel including a body having opposing sidewalls separated by a length dimension; and forming a gate contact on the channel.
    Type: Application
    Filed: December 12, 2016
    Publication date: August 1, 2019
    Inventors: Chia-Hong JAN, Walid M. HAFEZ, Neville L. DIAS, Rahul RAMASWAMY, Hsu-Yu CHANG, Roman W. OLAC-VAW, Chen-Guan LEE
  • Publication number: 20190206980
    Abstract: Fin-based thin film resistors, and methods of fabricating fin-based thin film resistors, are described. In an example, an integrated circuit structure includes a fin protruding through a trench isolation region above a substrate. The fin includes a semiconductor material and has a top surface, a first end, a second end, and a pair of sidewalls between the first end and the second end. An isolation layer is conformal with the top surface, the first end, the second end, and the pair of sidewalls of the fin. A resistor layer is conformal with the isolation layer conformal with the top surface, the first end, the second end, and the pair of sidewalls of the fin. A first anode cathode electrode is electrically connected to the resistor layer. A second anode or cathode electrode is electrically connected to the resistor layer.
    Type: Application
    Filed: October 21, 2016
    Publication date: July 4, 2019
    Inventors: Chia-Hong JAN, Walid M. HAFEZ, Neville L. DIAS, Rahul RAMASWAMY, Hsu-Yu CHANG, Roman W. OLAC-VAW, Chen-Guan LEE
  • Patent number: 10340273
    Abstract: An impurity source film is formed along a portion of a non-planar semiconductor fin structure. The impurity source film may serve as source of an impurity that becomes electrically active subsequent to diffusing from the source film into the semiconductor fin. In one embodiment, an impurity source film is disposed adjacent to a sidewall surface of a portion of a sub-fin region disposed between an active region of the fin and the substrate and is more proximate to the substrate than to the active area.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: July 2, 2019
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Walid M Hafez, Jeng-Ya David Yeh, Hsu-Yu Chang, Neville L Dias, Chanaka D Munasinghe
  • Publication number: 20190097057
    Abstract: An embodiment includes an apparatus comprising: a non-planar fin having first, second, and third portions each having major and minor axes and each being monolithic with each other; wherein (a) the major axes of the first, second, and third portions are parallel with each other, (b) the major axes of the first and second portions are non-collinear with each other, (c) each of the first, second, and third portions include a node of a transistor selected from the group comprising source, drain, and channel, (e) the first, second, and third portions comprise at least one finFET. Other embodiments are described herein.
    Type: Application
    Filed: November 29, 2018
    Publication date: March 28, 2019
    Inventors: Neville L. Dias, Chia-Hong Jan, Walid M. Hafez, Roman W. Olac-Vaw, Hsu-Yu Chang, Ting Chang, Rahul Ramaswamy, Pei-Chi Liu
  • Patent number: 10192969
    Abstract: Semiconductor device(s) including a transistor with a gate electrode having a work function monotonically graduating across the gate electrode length, and method(s) to fabricate such a device. In embodiments, a gate metal work function is graduated between source and drain edges of the gate electrode for improved high voltage performance. In embodiments, thickness of a gate metal graduates from a non-zero value at the source edge to a greater thickness at the drain edge. In further embodiments, a high voltage transistor with graduated gate metal thickness is integrated with another transistor employing a gate electrode metal of nominal thickness. In embodiments, a method of fabricating a semiconductor device includes graduating a gate metal thickness between a source end and drain end by non-uniformly recessing the first gate metal within the first opening relative to the surrounding dielectric.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: January 29, 2019
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Walid Hafez, Hsu-Yu Chang, Roman Olac-Vaw, Ting Chang, Rahul Ramaswamy, Pei-Chi Liu, Neville Dias
  • Publication number: 20190027604
    Abstract: Techniques are disclosed for forming a transistor with enhanced thermal performance. The enhanced thermal performance can be derived from the inclusion of thermal boost material adjacent to the transistor, where the material can be selected based on the transistor type being formed. In the case of PMOS devices, the adjacent thermal boost material may have a high positive linear coefficient of thermal expansion (CTE) (e.g., greater than 5 ppm/° C. at around 20° C.) and thus expand as operating temperatures increase, thereby inducing compressive strain on the channel region of an adjacent transistor and increasing carrier (e.g., hole) mobility. In the case of NMOS devices, the adjacent thermal boost material may have a negative linear CTE (e.g., less than 0 ppm/° C. at around 20° C.) and thus contract as operating temperatures increase, thereby inducing tensile strain on the channel region of an adjacent transistor and increasing carrier (e.g., electron) mobility.
    Type: Application
    Filed: April 1, 2016
    Publication date: January 24, 2019
    Applicant: INTEL CORPORATION
    Inventors: CHEN-GUAN LEE, WALID M. HAFEZ, JOODONG PARK, CHIA-HONG JAN, HSU-YU CHANG
  • Publication number: 20190019727
    Abstract: A semiconductor device is provided. The semiconductor device includes a gate stack over a semiconductor substrate and a spacer element over a sidewall of the gate stack. The spacer element has a lower portion and an upper portion, the lower portion has a substantially uniform width. The upper portion becomes wider along a direction from a top of the spacer element towards the lower portion, and a bottom of the upper portion is higher than a top of the gate stack. The semiconductor device also includes a dielectric layer surrounding the gate stack and the spacer element. The semiconductor device further includes a conductive contact penetrating through the dielectric layer and electrically connected to a conductive feature over the semiconductor substrate.
    Type: Application
    Filed: September 10, 2018
    Publication date: January 17, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hua-Li HUNG, Chih-Lun LU, Hsu-Yu HUANG, Tsung-Fan YIN, Ying-Ting HSIA, Yi-Wei CHIU, Li-Te HSU
  • Patent number: 10163465
    Abstract: A data receiver for a double data rate (DDR) memory includes a first stage circuit and a second stage circuit. The first stage circuit is deployed for receiving a single-ended signal from the DDR memory and converting the single-ended signal into a pair of differential signals. The second stage circuit, coupled to the first stage circuit, is deployed for receiving the differential signals from the first stage circuit and converting the differential signals into an output signal. Both of the first stage circuit and the second stage circuit are implemented in a core voltage domain.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: December 25, 2018
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Po-Yao Ko, Chien-Chung Chen, Hsu-Yu Huang, Chun-Po Huang
  • Patent number: 10164115
    Abstract: An embodiment includes an apparatus comprising: a non-planar fin having first, second, and third portions each having major and minor axes and each being monolithic with each other; wherein (a) the major axes of the first, second, and third portions are parallel with each other, (b) the major axes of the first and second portions are non-collinear with each other, (c) each of the first, second, and third portions include a node of a transistor selected from the group comprising source, drain, and channel, (e) the first, second, and third portions comprise at least one finFET. Other embodiments are described herein.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: December 25, 2018
    Assignee: Intel Corporation
    Inventors: Neville L. Dias, Chia-Hong Jan, Walid M. Hafez, Roman W. Olac-Vaw, Hsu-Yu Chang, Ting Chang, Rahul Ramaswamy, Pei-Chi Liu
  • Publication number: 20180323260
    Abstract: Embodiments of the present invention are directed to dual threshold voltage (VT) channel devices and their methods of fabrication. In an example, a semiconductor device includes a gate stack disposed on a substrate, the substrate having a first lattice constant. A source region and a drain region are formed on opposite sides of the gate electrode. A channel region is disposed beneath the gate stack and between the source region and the drain region. The source region is disposed in a first recess having a first depth and the drain region disposed in a second recess having a second depth. The first recess is deeper than the second recess. A semiconductor material having a second lattice constant different than the first lattice constant is disposed in the first recess and the second recess.
    Type: Application
    Filed: December 23, 2015
    Publication date: November 8, 2018
    Inventors: Hsu-Yu CHANG, Neville L. DIAS, Walid M. HAFEZ, Chia-Hong JAN, Roman W. OLAC-VAW, Chen-Guan LEE
  • Patent number: 10090304
    Abstract: An impurity source film is formed along a portion of a non-planar semiconductor fin structure. The impurity source film may serve as source of an impurity that becomes electrically active subsequent to diffusing from the source film into the semiconductor fin. In one embodiment, an impurity source film is disposed adjacent to a sidewall surface of a portion of a sub-fin region disposed between an active region of the fin and the substrate and is more proximate to the substrate than to the active area. In further embodiments, the impurity source film may provide a source of dopant that renders the sub-fin region complementarily doped relative to a region of the substrate forming a P/N junction that is at least part of an isolation structure electrically isolating the active fin region from a region of the substrate.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: October 2, 2018
    Assignee: Intel Corporation
    Inventors: Walid M. Hafez, Chia-Hong Jan, Jeng-Ya D. Yeh, Hsu-Yu Chang, Neville Dias, Chanaka Munasinghe
  • Patent number: 10074563
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a gate stack over a semiconductor substrate and a spacer element over a sidewall of the gate stack. The spacer element is substantially free of oxygen. The semiconductor device structure also includes a dielectric layer over the semiconductor substrate, and the dielectric layer surrounds the gate stack and the spacer element. The semiconductor device structure further includes a conductive contact penetrating through the dielectric layer and electrically connected to a conductive feature over the semiconductor substrate. An angle between a sidewall of the conductive contact and a top surface of the spacer element is in a range from about 90 degrees to about 120 degrees, and the conductive contact covers a portion of the spacer element.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: September 11, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hua-Li Hung, Chih-Lun Lu, Hsu-Yu Huang, Tsung-Fan Yin, Ying-Ting Hsia, Yi-Wei Chiu, Li-Te Hsu
  • Patent number: 9947585
    Abstract: An embodiment includes an apparatus comprising: a non-planar transistor comprising a fin, the fin including a source region having a source region width and a source region height, a channel region having a channel region width and a channel region height, a drain region having a drain width and a drain height, and a gate dielectric formed on a sidewall of the channel region; wherein the apparatus includes at least one of (a) the channel region width being wider than the source region width, and (b) the gate dielectric including a first gate dielectric thickness at a first location and a second gate dielectric thickness at a second location, the first and second locations located at an equivalent height on the sidewall and the first and second gate dielectrics thicknesses being unequal to one another. Other embodiments are described herein.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: April 17, 2018
    Assignee: Intel Corporation
    Inventors: Nidhi Nidhi, Chia-Hong Jan, Roman W. Olac-Vaw, Hsu-Yu Chang, Neville L. Dias, Walid M. Hafez, Rahul Ramaswamy
  • Publication number: 20180033693
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a gate stack over a semiconductor substrate and a spacer element over a sidewall of the gate stack. The spacer element is substantially free of oxygen. The semiconductor device structure also includes a dielectric layer over the semiconductor substrate, and the dielectric layer surrounds the gate stack and the spacer element. The semiconductor device structure further includes a conductive contact penetrating through the dielectric layer and electrically connected to a conductive feature over the semiconductor substrate. An angle between a sidewall of the conductive contact and a top surface of the spacer element is in a range from about 90 degrees to about 120 degrees, and the conductive contact covers a portion of the spacer element.
    Type: Application
    Filed: July 29, 2016
    Publication date: February 1, 2018
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hua-Li HUNG, Chih-Lun LU, Hsu-Yu HUANG, Tsung-Fan YIN, Ying-Ting HSIA, Yi-Wei CHIU, Li-Te HSU
  • Publication number: 20170207312
    Abstract: Semiconductor device(s) including a transistor with a gate electrode having a work function monotonically graduating across the gate electrode length, and method(s) to fabricate such a device. In embodiments, a gate metal work function is graduated between source and drain edges of the gate electrode for improved high voltage performance. In embodiments, thickness of a gate metal graduates from a non-zero value at the source edge to a greater thickness at the drain edge. In further embodiments, a high voltage transistor with graduated gate metal thickness is integrated with another transistor employing a gate electrode metal of nominal thickness. In embodiments, a method of fabricating a semiconductor device includes graduating a gate metal thickness between a source end and drain end by non-uniformly recessing the first gate metal within the first opening relative to the surrounding dielectric.
    Type: Application
    Filed: August 19, 2014
    Publication date: July 20, 2017
    Inventors: Chia-Hong Jan, Walid Hafez, Hsu-Yu Chang, Roman Olac-Vaw, Ting Chang, Rahul Ramaswamy, Pei-Chi Liu, Neville Dias
  • Publication number: 20170162503
    Abstract: A MOS antifuse with an accelerated dielectric breakdown induced by a void or seam formed in the electrode. In some embodiments, the programming voltage at which a MOS antifuse undergoes dielectric breakdown is reduced through intentional damage to at least part of the MOS antifuse dielectric. In some embodiments, damage may be introduced during an etchback of an electrode material which has a seam formed during backfilling of the electrode material into an opening having a threshold aspect ratio. In further embodiments, a MOS antifuse bit-cell includes a MOS transistor and a MOS antifuse. The MOS transistor has a gate electrode that maintains a predetermined voltage threshold swing, while the MOS antifuse has a gate electrode with a void accelerated dielectric breakdown.
    Type: Application
    Filed: August 19, 2014
    Publication date: June 8, 2017
    Inventors: Roman OLAC-VAW, Walid HAFEZ, Chia-Hong JAN, Hsu-Yu CHANG, Ting CHANG, Rahul RAMASWAMY, Pei-Chi LIU, Neville DIAS
  • Publication number: 20170125419
    Abstract: An impurity source film is formed along a portion of a non-planar semiconductor fin structure. The impurity source film may serve as source of an impurity that becomes electrically active subsequent to diffusing from the source film into the semiconductor fin. In one embodiment, an impurity source film is disposed adjacent to a sidewall surface of a portion of a sub-fin region disposed between an active region of the fin and the substrate and is more proximate to the substrate than to the active area.
    Type: Application
    Filed: January 18, 2017
    Publication date: May 4, 2017
    Inventors: Chia-Hong Jan, Walid M. Hafez, Jeng-Ya David Yeh, Hsu-Yu Chang, Neville L. Dias, Chanaka D. Munasinghe
  • Publication number: 20170103923
    Abstract: An embodiment includes an apparatus comprising: a non-planar transistor comprising a fin, the fin including a source region having a source region width and a source region height, a channel region having a channel region width and a channel region height, a drain region having a drain width and a drain height, and a gate dielectric formed on a sidewall of the channel region; wherein the apparatus includes at least one of (a) the channel region width being wider than the source region width, and (b) the gate dielectric including a first gate dielectric thickness at a first location and a second gate dielectric thickness at a second location, the first and second locations located at an equivalent height on the sidewall and the first and second gate dielectrics thicknesses being unequal to one another. Other embodiments are described herein.
    Type: Application
    Filed: June 27, 2014
    Publication date: April 13, 2017
    Inventors: NIDHI NIDHI, CHIA-HONG JAN, ROMAN W. OLAC-VAW, HSU-YU CHANG, NEVILLE L. DIAS, WALID M. HAFEZ, RAHUL RAMASWAMY
  • Publication number: 20170098709
    Abstract: An embodiment includes an apparatus comprising: a non-planar fm having first, second, and third portions each having major and minor axes and each being monolithic with each other; wherein (a) the major axes of the first, second, and third portions are parallel with each other, (b) the major axes of the first and second portions are non-collinear with each other, (c) each of the first, second, and third portions include a node of a transistor selected from the group comprising source, drain, and channel, (e) the first, second, and third portions comprise at least one fmFET. Other embodiments are described herein.
    Type: Application
    Filed: June 27, 2014
    Publication date: April 6, 2017
    Applicant: Intel Corporation
    Inventors: NEVILLE L. DIAS, CHIA-HONG JAN, WALID M. HAFEZ, ROMAN W. OLAC-VAW, HSU-YU CHANG, TING CHANG, RAHUL RAMASWAMY, PEI-CHI LIU
  • Publication number: 20160211262
    Abstract: An impurity source film is formed along a portion of a non-planar semiconductor fin structure. The impurity source film may serve as source of an impurity that becomes electrically active subsequent to diffusing from the source film into the semiconductor fin. In one embodiment, an impurity source film is disposed adjacent to a sidewall surface of a portion of a sub-fin region disposed between an active region of the fin and the substrate and is more proximate to the substrate than to the active area. In further embodiments, the impurity source film may provide a source of dopant that renders the sub-fin region complementarily doped relative to a region of the substrate forming a P/N junction that is at least part of an isolation structure electrically isolating the active fin region from a region of the substrate.
    Type: Application
    Filed: September 25, 2013
    Publication date: July 21, 2016
    Inventors: Walid M. HAFEZ, Chia-Hong JAN, Jeng-Ya D. YEH, Hsu-Yu CHANG, Neville DIAS, Chanaka MUNASINGHE