Patents by Inventor Hsun Wang
Hsun Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250142857Abstract: A semiconductor device is provided. The semiconductor device includes a silicon layer over a fin, a doped semiconductor layer over the fin and adjoining the silicon layer, a plurality of channel layers over the silicon layer, a source/drain structure on the doped semiconductor layer and adjoining plurality of channel layers, and a plurality of inner spacers between the plurality of channel layers.Type: ApplicationFiled: December 27, 2024Publication date: May 1, 2025Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chun-Hsiung LIN, Pei-Hsun WANG, Chih-Hao WANG, Kuo-Cheng CHING, Jui-Chien HUANG
-
Patent number: 12278188Abstract: Vias, along with methods for fabricating vias, are disclosed that exhibit reduced capacitance and resistance. An exemplary interconnect structure includes a first source/drain contact and a second source/drain contact disposed in a dielectric layer. The first source/drain contact physically contacts a first source/drain feature and the second source/drain contact physically contacts a second source/drain feature. A first via having a first via layer configuration, a second via having a second via layer configuration, and a third via having a third via layer configuration are disposed in the dielectric layer. The first via and the second via extend into and physically contact the first source/drain contact and the second source/drain contact, respectively. A first thickness of the first via and a second thickness of the second via are the same. The third via physically contacts a gate structure, which is disposed between the first source/drain contact and the second source/drain contact.Type: GrantFiled: June 30, 2023Date of Patent: April 15, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Shih-Che Lin, Po-Yu Huang, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Rueijer Lin, Wei-Jung Lin, Chen-Yuan Kao
-
Patent number: 12278162Abstract: A method includes bonding a first package and a second package over a package component, adhering a first Thermal Interface Material (TIM) and a second TIM over the first package and the second package, respectively, dispensing an adhesive feature on the package component, and placing a heat sink over and contacting the adhesive feature. The heat sink includes a portion over the first TIM and the second TIM. The adhesive feature is then cured.Type: GrantFiled: August 7, 2023Date of Patent: April 15, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Yu-Hsun Wang, Ping-Yin Hsieh, Pu Wang, Li-Hui Cheng, Szu-Wei Lu
-
Publication number: 20250118655Abstract: A semiconductor structure according to the present disclosure includes a substrate; a through substrate via (TSV) cell over the substrate; and a TSV extending through the TSV cell and the substrate. The TSV cell includes a guard ring structure extending around a perimeter of the TSV cell, and a buffer zone surrounded by the guard ring. The buffer zone includes first dummy transistors, and second dummy transistors. Each of the first dummy transistors includes two first type epitaxial features, a first plurality of nanostructures extending between the two first type epitaxial features, and a first isolation gate structure wrapping over the first plurality of nanostructures. Each of the second dummy transistors includes two second type epitaxial feature, a second plurality of nanostructures extending between the two first type epitaxial features, and a second isolation gate structure wrapping over the second plurality of nanostructures.Type: ApplicationFiled: January 19, 2024Publication date: April 10, 2025Inventors: Yun-Sheng Li, Chih Hsin Yang, Chih-Chieh Chang, Mao-Nan Wang, Kuan-Hsun Wang, Yang-Hsin Shih
-
Patent number: 12266703Abstract: An interconnect fabrication method is disclosed herein that utilizes a disposable etch stop hard mask over a gate structure during source/drain contact formation and replaces the disposable etch stop hard mask with a dielectric feature (in some embodiments, dielectric layers having a lower dielectric constant than a dielectric constant of dielectric layers of the disposable etch stop hard mask) before gate contact formation. An exemplary device includes a contact etch stop layer (CESL) having a first sidewall CESL portion and a second sidewall CESL portion separated by a spacing and a dielectric feature disposed over a gate structure, where the dielectric feature and the gate structure fill the spacing between the first sidewall CESL portion and the second sidewall CESL portion. The dielectric feature includes a bulk dielectric over a dielectric liner. The dielectric liner separates the bulk dielectric from the gate structure and the CESL.Type: GrantFiled: December 9, 2021Date of Patent: April 1, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Shih-Che Lin, Po-Yu Huang, I-Wen Wu, Chen-Ming Lee, Chia-Hsien Yao, Chao-Hsun Wang, Fu-Kai Yang, Mei-Yun Wang
-
Patent number: 12243940Abstract: A semiconductor structure includes a source/drain (S/D) feature disposed in a semiconductor layer, a metal gate stack (MG) disposed in a first interlayer dielectric (ILD) layer and adjacent to the S/D feature, a second ILD layer disposed over the MG, and an S/D contact disposed over the S/D feature. The semiconductor structure further includes an air gap disposed between a sidewall of a bottom portion of the S/D contact and the first ILD layer, where a sidewall of a top portion of the S/D contact is in direct contact with the second ILD layer.Type: GrantFiled: June 16, 2023Date of Patent: March 4, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chao-Hsun Wang, Chen-Ming Lee, Kuo-Yi Chao, Mei-Yun Wang, Pei-Yu Chou, Kuo-Ju Chen
-
Patent number: 12243780Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a gate stack over a substrate. The substrate has a base and a multilayer structure over the base, and the gate stack wraps around the multilayer structure. The method includes partially removing the multilayer structure, which is not covered by the gate stack. The multilayer structure remaining under the gate stack forms a multilayer stack, and the multilayer stack includes a sacrificial layer and a channel layer over the sacrificial layer. The method includes partially removing the sacrificial layer to form a recess in the multilayer stack. The method includes forming an inner spacer layer in the recess and a bottom spacer over a sidewall of the channel layer. The method includes forming a source/drain structure over the bottom spacer. The bottom spacer separates the source/drain structure from the channel layer.Type: GrantFiled: September 13, 2021Date of Patent: March 4, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Ching-Wei Tsai, Yu-Xuan Huang, Kuan-Lun Cheng, Chih-Hao Wang, Min Cao, Jung-Hung Chang, Lo-Heng Chang, Pei-Hsun Wang, Kuo-Cheng Chiang
-
Publication number: 20250070052Abstract: A method includes forming first nanostructures over a first region of a substrate; forming second nanostructures over a second region of the substrate; forming first gate structures around the first nanostructures; replacing the second nanostructures with isolation regions; and forming a seal ring over the substrate, wherein the seal ring is between the first region and the second region.Type: ApplicationFiled: October 24, 2023Publication date: February 27, 2025Inventors: Ke-Gang Wen, Chih Hsin Yang, Kuan-Hsun Wang, Tsung-Chieh Hsiao, Liang-Wei Wang, Dian-Hau Chen
-
Publication number: 20250069990Abstract: An embodiment includes a device, the device including a first die including a first surface and a second surface opposite the first surface. The first die includes a plurality of through substrate vias (TSVs) exposed from the second surface of the first die. The device also includes a guard ring surrounding the plurality of TSVs. The device also includes a dummy metallization pattern surrounding the guard ring. The device also includes an active metallization pattern connected to active devices in the first die.Type: ApplicationFiled: January 3, 2024Publication date: February 27, 2025Inventors: Yang-Hsin Shih, Kuan-Hsun Wang, Chih Hsin Yang
-
Publication number: 20250043227Abstract: A microfluidic EP device for exogenous molecules transfection is disclosed that has high speed, high viability, and efficiency for collection of cells after EP. The microfluidic EP device has an EP chamber assembly, an adaptor, a pop up device, a syringe pump assembly, an EP controller, and a system controller. The EP chamber assembly has a MEMS nano channel plate, a MEMS cap, a cell cavity plate, and a cell cavity plate holder. The EP chamber assembly is connected to the pop up device through the adaptor. The pop up device may be an ultrasound vibrator or a motorized rotator. The MEMS cap has inlets/outlets for inputting/outputting cell solution, washing solution, transfected cells, exogenous material solution. The solution fluid is inputted/outputted by plastic tube and needle adaptor to the syringe pump assembly. All operation sequences are controlled by the system controller, which may perform batch operation continuously.Type: ApplicationFiled: July 31, 2023Publication date: February 6, 2025Inventors: Chein-Hsun WANG, Yun-Hsiang CHEN, Jyh-Yih LEU, Wen-Chie HUANG, Chin-Hsiang CHANG, Jenping KU, Ming-Tsung YANG
-
Patent number: 12218226Abstract: A semiconductor device is provided. The semiconductor device includes a plurality of channel layers stacked over a semiconductor substrate and spaced apart from one another, a source/drain structure adjoining the plurality of channel layers, a gate structure wrapping around the plurality of channel layers, and a first inner spacer between the gate structure and the source/drain structure and between the plurality of channel layers. The first inner spacer is made of an oxide of a semiconductor material.Type: GrantFiled: October 27, 2020Date of Patent: February 4, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chun-Hsiung Lin, Pei-Hsun Wang, Chih-Hao Wang, Kuo-Cheng Ching, Jui-Chien Huang
-
Patent number: 12211900Abstract: A device includes a first semiconductor strip protruding from a substrate, a second semiconductor strip protruding from the substrate, an isolation material surrounding the first semiconductor strip and the second semiconductor strip, a nanosheet structure over the first semiconductor strip, wherein the nanosheet structure is separated from the first semiconductor strip by a first gate structure including a gate electrode material, wherein the first gate structure partially surrounds the nanosheet structure, and a first semiconductor channel region and a semiconductor second channel region over the second semiconductor strip, wherein the first semiconductor channel region is separated from the second semiconductor channel region by a second gate structure including the gate electrode material, wherein the second gate structure extends on a top surface of the second semiconductor strip.Type: GrantFiled: July 13, 2023Date of Patent: January 28, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Pei-Yu Wang, Pei-Hsun Wang
-
Patent number: 12211787Abstract: A semiconductor structure and the manufacturing method thereof are disclosed. An exemplary semiconductor structure includes a first source/drain contact and a second source/drain contact spaced apart by a gate structure, an etch stop layer (ESL) over the first source/drain contact and the second source/drain contact, a conductive feature disposed in the etch stop layer and in direct contact with the first source/drain contact and the second source/drain contact, a dielectric layer over the etch stop layer, and a contact via extending through the dielectric layer and electrically connected to the conductive feature. By providing the conductive feature, a number of metal lines in an interconnect structure of the semiconductor structure may be advantageously reduced.Type: GrantFiled: April 28, 2023Date of Patent: January 28, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chao-Hsun Wang, Wang-Jung Hsueh, Fu-Kai Yang, Mei-Yun Wang, Sheng-Hsiung Wang, Shih-Hsien Huang
-
Patent number: 12198986Abstract: A semiconductor structure includes a fin disposed on a substrate, the fin including a channel region comprising a plurality of channels vertically stacked over one another, the channels comprising germanium distributed therein. The semiconductor structure further includes a gate stack engaging the channel region of the fin and gate spacers disposed between the gate stack and the source and drain regions of the fin, wherein each channel of the channels includes a middle section wrapped around by the gate stack and two end sections engaged by the gate spacers, wherein a concentration of germanium in the middle section of the channel is higher than a concentration of germanium in the two end sections of the channel, and wherein the middle section of the channel further includes a core portion and an outer portion surrounding the core portion with a germanium concentration profile from the core portion to the outer portion.Type: GrantFiled: August 7, 2023Date of Patent: January 14, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Wei-Sheng Yun, Chih-Hao Wang, Jui-Chien Huang, Kuo-Cheng Chiang, Chih-Chao Chou, Chun-Hsiung Lin, Pei-Hsun Wang
-
Patent number: 12174596Abstract: A grinding and polishing simulation method, a grinding and polishing simulation system and a grinding and polishing process transferring method. The grinding and polishing simulation method includes the following steps. A sensing information of a grinding and polishing apparatus when grinding or polishing a workpiece is obtained. A plurality of model parameters is identified according to the sensing information. At least one quality parameter is calculated according to a machining path, a plurality of process parameters and the plurality of model parameters.Type: GrantFiled: December 28, 2020Date of Patent: December 24, 2024Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventors: Yuan-Chieh Lo, Yu-Hsun Wang, Pei-Chun Lin, Chih-Hsuan Shih, Shu Huang
-
Patent number: 12176435Abstract: A method for forming a FinFET device structure is provided. The method includes forming a gate dielectric layer over a fin structure. The method also includes forming a gate electrode layer over the gate dielectric layer. The method further includes forming a first dielectric layer formed over the gate dielectric layer. In addition, the method includes forming a first conductive layer on the gate dielectric layer. A bottom surface of the first conductive layer is in direct contact a top surface of the gate electrode layer, a sidewall of the first conductive layer is in direct contact the first dielectric layer and spaced apart from the gate dielectric layer.Type: GrantFiled: March 2, 2022Date of Patent: December 24, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chao-Hsun Wang, Kuo-Yi Chao, Rueijer Lin, Chen-Yuan Kao, Mei-Yun Wang
-
Publication number: 20240397621Abstract: A circuit board device includes a transition region that includes a first conductive layer at a first level, a second conductive layer at a second level, and conductive vias. The first conductive layer includes a pad connected to the solderless connector, a transmission line, and a first reference layer. The transmission line includes first and second segments. A second width of the second segment is the same as or less than a first width of the first segment. The first reference layer has a first anti-pad region for the pad and the transmission line disposed therein. In a plan view, the first anti-pad region surrounding the pad is completely located within a second anti-pad region of a second reference layer of the second conductive layer. The conductive vias are disposed between the first and second conductive layers and surround the pad.Type: ApplicationFiled: June 30, 2023Publication date: November 28, 2024Applicants: UNIMICRON TECHNOLOGY CORP., National Taiwan UniversityInventors: Chin-Hsun WANG, Ruey-Beei WU, Chun-Jui HUANG, Wei-Yu LIAO, Ching-Sheng CHEN, Chi-Min CHANG
-
Publication number: 20240387660Abstract: An interconnect fabrication method is disclosed herein that utilizes a disposable etch stop hard mask over a gate structure during source/drain contact formation and replaces the disposable etch stop hard mask with a dielectric feature (in some embodiments, dielectric layers having a lower dielectric constant than a dielectric constant of dielectric layers of the disposable etch stop hard mask) before gate contact formation. An exemplary device includes a contact etch stop layer (CESL) having a first sidewall CESL portion and a second sidewall CESL portion separated by a spacing and a dielectric feature disposed over a gate structure, where the dielectric feature and the gate structure fill the spacing between the first sidewall CESL portion and the second sidewall CESL portion. The dielectric feature includes a bulk dielectric over a dielectric liner. The dielectric liner separates the bulk dielectric from the gate structure and the CESL.Type: ApplicationFiled: July 26, 2024Publication date: November 21, 2024Inventors: Shih-Che Lin, Po-Yu Huang, I-Wen Wu, Chen-Ming Lee, Chia-Hsien Yao, Chao-Hsun Wang, Fu-Kai Yang, Mei-Yun Wang
-
Publication number: 20240387287Abstract: Provided are FinFET devices and methods of forming the same. A FinFET device includes a substrate, a first gate strip and a second gate strip. The substrate has at least one first fin in a first region, at least one second fin in a second region and an isolation layer covering lower portions of the first and second fins. The first fin includes a first material layer and a second material layer over the first material layer, and the interface between the first material layer and the second material layer is uneven. The first gate strip is disposed across the first fin. The second gate strip is disposed across the second fin.Type: ApplicationFiled: July 30, 2024Publication date: November 21, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chih-Hao Wang, Jui-Chien Huang, Kuo-Cheng Ching, Chun-Hsiung Lin, Pei-Hsun Wang
-
Patent number: 12148673Abstract: Provided are FinFET devices and methods of forming the same. A FinFET device includes a substrate, a first gate strip and a second gate strip. The substrate has at least one first fin in a first region, at least one second fin in a second region and an isolation layer covering lower portions of the first and second fins. The first fin includes a first material layer and a second material layer over the first material layer, and the interface between the first material layer and the second material layer is uneven. The first gate strip is disposed across the first fin. The second gate strip is disposed across the second fin.Type: GrantFiled: August 1, 2023Date of Patent: November 19, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chih-Hao Wang, Jui-Chien Huang, Kuo-Cheng Ching, Chun-Hsiung Lin, Pei-Hsun Wang