Patents by Inventor Hua Xia

Hua Xia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10483745
    Abstract: A method for making a downhole electrical feedthrough package where the feedthrough package may include a metal shell forming a shell conduit. A metal web may be coupled to the metal shell, and the metal web may form a web conduit. A conducting pin may extend through the shell conduit and web conduit. A dielectric seal may electrically isolate the conducting pin from the metal web. The dielectric seal may be formed by a bismuth glass based dielectric sealing material system having at least two of the four components selected from Bi2O3, B2O3, MO, and optionally REO forming a bismuth glass system. MO may be selected from ZnO, BaO, TiO2, and Fe2O3, and their glass making pre-cursors. REO may be selected from CeO2, Y2O3, Sc2O3, Nd2O3, Pr2O3, and lanthanum series oxides. One or more isolators may be disposed within the shell conduit proximate to the dielectric seal and surrounding a portion of the conducting pin.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: November 19, 2019
    Assignee: PA&E, Hermetic Solutions Group, LLC
    Inventors: Hua Xia, Nelson Settles, Tucker Havekost, Don Larson
  • Publication number: 20190339410
    Abstract: A downhole formation fluid identification sensing module for measuring averaged gas molecular weight of wellbore formation fluid acquires simultaneous temperature, pressure, and density measurements. The sensing module includes two venturi-type gas sensors that both contain vibrating tubes. During operation, formation fluid flows through the vibrating tubes whereby resonant frequency measurements are acquired simultaneously with temperature and pressure measurements. Each measurement is then utilized to determine the gas molecular weight of the dry, wet or saturated formation fluid.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Inventors: Hua Xia, Christopher Michael Jones, Robert Atkinson, Tian He, Bin Dai, Jing Shen
  • Patent number: 10458233
    Abstract: A downhole tool including a tube having an inner bore that receives a sample of fluid from a subterranean formation, a vibration source and a vibration receiver each at least partially coupled to the tube, and a controller coupled to the vibration source and the vibration receiver is provided. In situ measurements of thermo-physical properties including, but not limited to, fluid density/viscosity, thermal conductivity and heat capacity, and hydrocarbon molecular weight may be provided through the system. The vibrating sensor may include a sensor platform that can be incorporated into sensors purpose built to test different in situ thermo-physical properties that are technically difficult or expensive to test using typical sensors. The vibrating sensors may be modularized and incorporated as a suite of in situ downhole sensors into existing downhole fluid sampling tools, reducing the overall expense of in situ testing.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: October 29, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Hua Xia
  • Patent number: 10428648
    Abstract: A downhole formation fluid viscometer sensor and method therefor include a viscometer sensing package, a flexible diaphragm, a magnet and electric coil, and a signal pickup assembly. The viscometer sensor may also include a first cavity and a second cavity for mechanical and electric energy transfer. The magnet and electric coil may be driven by external alternating current to generate an electromagnetic force. Silicon oil may be used to fill the first cavity and/or a pressure balance hole may connect the first cavity to an external area. The diaphragm may be a titanium alloy and a ferromagnetic magnet may be attached to the diaphragm. The diaphragm preferably has a thickness from about 0.030 to about 0.040 inches and the magnet and electric coil can propel the diaphragm to vibrate at a frequency from 0 to 100 kHz. Formation fluid viscosity is determined using resonant frequency linewidth, with contributions from the sensor package intrinsic properties removed.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: October 1, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hua Xia, Lizheng Zhang, Robert Atkinson, Nestor Rodriguez, Christopher Michael Jones, Darren Gascooke
  • Publication number: 20190229515
    Abstract: A method for making a downhole electrical feedthrough package where the feedthrough package may include a metal shell forming a shell conduit. A metal web may be coupled to the metal shell, and the metal web may form a web conduit. A conducting pin may extend through the shell conduit and web conduit. A dielectric seal may electrically isolate the conducting pin from the metal web. The dielectric seal may be formed by a bismuth glass based dielectric sealing material system having at least two of the four components selected from Bi2O3, B2O3, MO, and optionally REO forming a bismuth glass system. MO may be selected from ZnO, BaO, TiO2, and Fe2O3, and their glass making pre-cursors. REO may be selected from CeO2, Y2O3, Sc2O3, Nd2O3, Pr2O3, and lanthanum series oxides. One or more isolators may be disposed within the shell conduit proximate to the dielectric seal and surrounding a portion of the conducting pin.
    Type: Application
    Filed: April 3, 2019
    Publication date: July 25, 2019
    Applicant: PA&E, Hermetic Solutions Group, LLC
    Inventors: Hua Xia, Nelson Settles, Tucker Havekost, Don Larson
  • Patent number: 10291008
    Abstract: A downhole electrical feedthrough package and method for making the same. The feedthrough package may include a metal shell forming a shell conduit. A metal web may be coupled to the metal shell, and the metal web may form a web conduit. A conducting pin may extend through the shell conduit and web conduit. A dielectric seal may electrically isolate the conducting pin from the metal web. The dielectric seal may be formed by a bismuth glass based dielectric sealing material system having at least two of the four components selected from Bi2O3, B2O3, MO, and optionally REO forming a bismuth glass system. MO may be selected from ZnO, BaO, TiO2, and Fe2O3, and their glass making pre-cursors. REO may be selected from CeO2, Y2O3, Sc2O3, Nd2O3, Pr2O3, and lanthanum series oxides. One or more isolators may be disposed within the shell conduit proximate to the dielectric seal and surrounding a portion of the conducting pin.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: May 14, 2019
    Assignee: PA&E, HERMETIC SOLUTIONS GROUP, LLC
    Inventors: Hua Xia, Nelson Settles, Tucker Havekost, Don Larson
  • Patent number: 10274628
    Abstract: A distributed acoustic sensing cable including an optical fiber waveguide configured to provide light signal transmission and an acoustic device coupled to the optical fiber waveguide and configured to provide acoustic signal transmission. The acoustic device includes a polymer composite having reinforced fibers embedded therein. The polymer composite having acoustic waveguides for attenuating undesirable acoustic waves propagating along the distributed acoustic sensing cable and optical fibers embedded within the polymer composite that extend along an axial length of the acoustic device that facilitate the light signal transmission.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: April 30, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hua Xia, Avinash Vinayak Taware, David Andrew Barfoot
  • Patent number: 10261005
    Abstract: A system is provided that can include a first tube for communicating a fluid through a wellbore. The system can also include a gap between the first tube and a first electromagnetic acoustic transducer (EMAT). The first EMAT can be positioned to magnetically couple with the first tube. The first EMAT can include a magnet and a wire coil positioned around the magnet. The first EMAT can coupled to a power source and positioned to, responsive to receiving a power from the power source, apply a first magnetic force to the first tube for determining a density or viscosity of the fluid.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: April 16, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hua Xia, Darren Gascooke
  • Patent number: 10215015
    Abstract: A distributed acoustic sensing cable package having a polymer composite extruded over an optical waveguide to encase the waveguide and to form a crystalline matrix layer acoustically coupled to the waveguide. The crystalline matrix includes reinforcement fibers to further enhance transmission of a cable strain to the optical waveguide. During manufacture of the cable, the polymer composite may be extruded over the optical waveguide and subsequently subjected to heat treatment to increase the crystallinity of the polymer composite and increase the elastic modulus. Both axial and radial strain fields are effectively interact with cased fiber waveguide for producing measurable phase shift signal for distributed acoustic noise detection.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: February 26, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hua Xia, Avinash V. Taware, David A. Barfoot
  • Patent number: 10215016
    Abstract: A distributed acoustic sensing cable package having a polymer composite extruded over an optical waveguide to encase the waveguide and to form a crystalline matrix layer acoustically coupled to the waveguide. The crystalline matrix includes reinforcement fibers to further enhance transmission of a cable strain to the optical waveguide. During manufacture of the cable, the polymer composite may be extruded over the optical waveguide and subsequently subjected to heat treatment to increase the crystallinity of the polymer composite and increase the elastic modulus. Both axial and radial strain fields are effectively interact with cased fiber waveguide for producing measurable phase shift signal for distributed acoustic noise detection.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: February 26, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hua Xia, Avinash V. Taware, David A. Barfoot
  • Publication number: 20190027914
    Abstract: Methods for use in the manufacture or assembly of an electrical feedthrough to provide a solution to the technical and operational challenges that may arise from use of a high-CTE metal/low-CTE sealing material based assembly or package. In some embodiments, the inventive method includes a thermal tempering and thermal quenching process that is used to create an interfacial layer of the sealing material in which there exists a CTE gradient from sealing material to the metal shell and pin(s). This enables the production of an electrical feedthrough assembly that can tolerate high-CTE mismatch induced mechanical stress over a wide operating temperature range.
    Type: Application
    Filed: June 14, 2018
    Publication date: January 24, 2019
    Inventors: Hua Xia, Nelson Settles, Robert Sawyer
  • Patent number: 10173381
    Abstract: A distributed acoustic sensing cable package having a polymer composite extruded over an optical waveguide to encase the waveguide and to form a crystalline matrix layer acoustically coupled to the waveguide. The crystalline matrix includes reinforcement fibers to further enhance transmission of a cable strain to the optical waveguide. During manufacture of the cable, the polymer composite may be extruded over the optical waveguide and subsequently subjected to heat treatment to increase the crystallinity of the polymer composite and increase the elastic modulus. Both axial and radial strain fields are effectively interact with cased fiber waveguide for producing measurable phase shift signal for distributed acoustic noise detection.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: January 8, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hua Xia, Avinash V. Taware, David A. Barfoot
  • Patent number: 10168371
    Abstract: A system for determining the impact of moisture on a dielectric sealing material may include a testing apparatus having a testing chamber. A dielectric sealing material and a conducting pin may be exposed to the testing chamber. A first electrical lead may be coupled to the conducting pin, and a second electrical lead may be coupled to the dialectic material. An insulation resistance measurement unit may be coupled to both the first electrical lead and the second electrical lead, and the insulation resistance measurement unit may be configured to measure an insulation resistance value between the electrical leads. The insulation resistance measurement unit may measure a first insulation resistance value of the dielectric sealing material in a first environmental condition, and the insulation resistance measurement unit may measure a second insulation resistance value of the dielectric sealing material at a second environmental condition, that is different than the first environmental condition.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: January 1, 2019
    Assignee: PA&E, HERMETIC SOLUTIONS GROUP, LLC
    Inventors: Hua Xia, Tucker Havekost, Daniel Brown, Erich Preissler, Mike Grimm
  • Publication number: 20180352058
    Abstract: An approach is provided in which an information handling system receives, at a network virtualization edge (NVE), a set of Diffserv parameters comprising at least one classifier parameter, at least one meter parameter, at least one marker parameter, and at least one shaper/dropper parameter. The NVE performs a deep inspection on a plurality of data packets to classify the plurality of data packets at one or more classification levels. In turn, the NVE passes the set of Diffserv parameters and the one or more classification levels to underlay switch hardware.
    Type: Application
    Filed: July 23, 2018
    Publication date: December 6, 2018
    Inventors: Jin Jing Lin, Gang Tang, Jian Hua Xia, Ming Shuang Xian
  • Publication number: 20180331464
    Abstract: A downhole electrical feedthrough package and method for making the same. The feedthrough package may include a metal shell forming a shell conduit. A metal web may be coupled to the metal shell, and the metal web may form a web conduit. A conducting pin may extend through the shell conduit and web conduit. A dielectric seal may electrically isolate the conducting pin from the metal web. The dielectric seal may be formed by a bismuth glass based dielectric sealing material system having at least two of the four components selected from Bi2O3, B2O3, MO, and optionally REO forming a bismuth glass system. MO may be selected from ZnO, BaO, TiO2, and Fe2O3, and their glass making pre-cursors. REO may be selected from CeO2, Y2O3, Sc2O3, Nd2O3, Pr2O3, and lanthanum series oxides. One or more isolators may be disposed within the shell conduit proximate to the dielectric seal and surrounding a portion of the conducting pin.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 15, 2018
    Applicant: Pacific Aerospace & Electronics, Inc.
    Inventors: Hua Xia, Nelson Settles, Tucker Havekost, Don Larson
  • Patent number: 10129099
    Abstract: An approach is provided in which an information handling system matches packet properties of an egress data packet to a classification rule corresponding to differentiated services (DiffServ) parameters. The information handling system encapsulates the egress data packet with a network virtualization overlay header that includes a DiffServ classification identifier corresponding to the DiffServ classification rule. In turn, the information handling system sends the encapsulated egress data packet to a downstream network component.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: November 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Jin Jing Lin, Gang Tang, Jian Hua Xia, Ming Shuang Xian
  • Publication number: 20180313214
    Abstract: A downhole tool including a tube having an inner bore that receives a sample of fluid from a subterranean formation, a vibration source and a vibration receiver each at least partially coupled to the tube, and a controller coupled to the vibration source and the vibration receiver is provided. In situ measurements of thermo-physical properties including, but not limited to, fluid density/viscosity, thermal conductivity and heat capacity, and hydrocarbon molecular weight may be provided through the system. The vibrating sensor may include a sensor platform that can be incorporated into sensors purpose built to test different in situ thermo-physical properties that are technically difficult or expensive to test using typical sensors. The vibrating sensors may be modularized and incorporated as a suite of in situ downhole sensors into existing downhole fluid sampling tools, reducing the overall expense of in situ testing.
    Type: Application
    Filed: December 29, 2016
    Publication date: November 1, 2018
    Inventor: Hua Xia
  • Publication number: 20180284176
    Abstract: A system for determining the impact of moisture on a dielectric sealing material may include a testing apparatus having a testing chamber. A dielectric sealing material and a conducting pin may be exposed to the testing chamber. A first electrical lead may be coupled to the conducting pin, and a second electrical lead may be coupled to the dialectic material. An insulation resistance measurement unit may be coupled to both the first electrical lead and the second electrical lead, and the insulation resistance measurement unit may be configured to measure an insulation resistance value between the electrical leads. The insulation resistance measurement unit may measure a first insulation resistance value of the dielectric sealing material in a first environmental condition, and the insulation resistance measurement unit may measure a second insulation resistance value of the dielectric sealing material at a second environmental condition, that is different than the first environmental condition.
    Type: Application
    Filed: April 4, 2017
    Publication date: October 4, 2018
    Applicant: Pacific Aerospace & Electronics, Inc.
    Inventors: Hua Xia, Tucker Havekost, Daniel Brown, Erich Preissler, Mike Grimm
  • Patent number: 10073005
    Abstract: In some embodiments, a distributed nondestructive inspection method for slickline cable structural defect detection transmits a light pulse along an optical waveguide in the slickline cable. A reflected light signal is 5 received from the optical waveguide in response to the light pulse. Defects can then be determined in the slickline cable based on variations in scattering intensity, phase shift, specific spectral signature, power spectral density, strain amplitude, and/or transmission loss of the reflected light signal as compared to the light pulse.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: September 11, 2018
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Hua Xia, David L. Perkins, John L. Maida, Sean Gregory Thomas
  • Patent number: 10012077
    Abstract: A downhole sensor package for detecting one or more thermophysical properties of a downhole fluid, comprising a sensor housing having a fluid input port and a fluid output port; an inner flow tube located within and axially defined with the sensor package housing; an outer flow annulus defined between the inner flow tube and the sensor housing, wherein the inner flow tube is in fluid communication with the outer flow annulus; and a vibration source and a vibration detector engaging the inner flow tube; and methods for using the same are disclosed.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: July 3, 2018
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hua Xia, Lizheng Zhang, Robert Atkinson, Nestor Rodriguez, Christopher Michael Jones, Darren Gascooke