Patents by Inventor Huan-Tsung Huang

Huan-Tsung Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7768072
    Abstract: A PMOS (p-channel metal oxide semiconductor) device having at low voltage threshold MOSFET (MOS field effect transistor) with an improved work function and favorable DIBL (drain-induced barrier lowering) and SCE (short channel effect) characteristics, and a method for making such a device. The PMOS device includes a gate structure that is disposed on a substrate and includes a silicided gate electrode. The silicide is preferably nickel-rich and includes a peak platinum concentration at or near the interface between the gate electrode and a dielectric layer that separates the gate electrode from the substrate. The platinum peak region is produced by a multi-step rapid thermal annealing or similar process. The PMOS device may also include two such MOSFETs, one of which is boron-doped and one of which is not.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: August 3, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Wei Tsai, Chih-Hao Wang, Wei-Jung Lin, Huan-Tsung Huang, Carlos H. Diaz
  • Patent number: 7759210
    Abstract: A method for forming a MOS device on a semiconductor substrate includes steps of: forming a gate structure on the semiconductor substrate; implanting ions into the semiconductor substrate for forming one or more lightly doped drain structures adjacent to the gate structure; thermally treating the semiconductor substrate at a first temperature lower than a threshold temperature, below which no substantial transient enhanced diffusion of the lightly doped drain structures occurs, for repairing damage to the semiconductor substrate caused by the ion implantation; forming sidewall spacers to sidewalls of the gate structure on the semiconductor substrate; and forming source and drain regions adjacent to the gate structure in the semiconductor substrate.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: July 20, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Huan-Tsung Huang, Fung Ka Hing
  • Publication number: 20100078733
    Abstract: The present disclosure provides a method for making a semiconductor device having metal gate stacks. The method includes forming a high k dielectric material layer on a semiconductor substrate; forming a first metal layer on the high k dielectric material layer; forming a silicon layer on the first metal layer; patterning the silicon layer, the first metal layer and the high k dielectric material layer to form a gate stack; and performing a silicidation process to fully change the silicon layer into a silicide electrode.
    Type: Application
    Filed: May 8, 2009
    Publication date: April 1, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yuri Masuoka, Huan-Tsung Huang
  • Publication number: 20100065925
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a semiconductor substrate having a source region and a drain region, defining a first dimension from the source to drain; and a gate stack disposed on the semiconductor substrate and partially interposed between the source region and the drain region. The gate stack includes a high k dielectric layer disposed on the semiconductor substrate; a first metal feature disposed on the high k dielectric layer, the first metal gate feature having a first work function and defining a second dimension parallel with the first dimension; and a second metal feature having a second work function different from the first work function and defining a third dimension parallel with the first dimension, the third dimension being less than the second dimension.
    Type: Application
    Filed: April 15, 2009
    Publication date: March 18, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Huan-Tsung Huang, Shyh-Horng Yang, Yuri Masuoka, Ken-Ichi Goto
  • Publication number: 20100052063
    Abstract: The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first active region and a second active region, providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a first capping layer and a second capping layer over the high-k dielectric layer, the first capping layer overlying the first region and the second capping layer overlying the second region, forming a layer containing silicon (Si) over the first and second capping layers, forming a metal layer over the layer containing Si, and forming a first gate stack over the first region and a second gate stack over the second active region.
    Type: Application
    Filed: December 18, 2008
    Publication date: March 4, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yuri Masuoka, Peng-Fu Hsu, Huan-Tsung Huang, Kuo-Tai Huang, Carlos H. Diaz, Yong-Tian Hou
  • Publication number: 20080258185
    Abstract: Leakage current can be substantially reduced by the formation of a seal dielectric in place of the conventional junction between source/drain region(s) and the substrate material. Trenches are formed in the substrate and lined with a seal dielectric prior to filling the trenches with semiconductor material. Preferably, the trenches are overfilled and a CMP process planarizes the overfill material. An epitaxial layer can be grown atop the trenches after planarization, if desired.
    Type: Application
    Filed: April 19, 2007
    Publication date: October 23, 2008
    Inventors: Huan-Tsung Huang, Kuo-Cheng Wu, Carlos H. Diaz
  • Publication number: 20080237750
    Abstract: A PMOS (p-channel metal oxide semiconductor) device having at low voltage threshold MOSFET (MOS field effect transistor) with an improved work function and favorable DIBL (drain-induced barrier lowering) and SCE (short channel effect) characteristics, and a method for making such a device. The PMOS device includes a gate structure that is disposed on a substrate and includes a silicided gate electrode. The silicide is preferably nickel-rich and includes a peak platinum concentration at or near the interface between the gate electrode and a dielectric layer that separates the gate electrode from the substrate. The platinum peak region is produced by a multi-step rapid thermal annealing or similar process. The PMOS device may also include two such MOSFETs, one of which is boron-doped and one of which is not.
    Type: Application
    Filed: March 27, 2007
    Publication date: October 2, 2008
    Inventors: Ching-Wei Tsai, Chih-Hao Wang, Wei-Jung Lin, Huan-Tsung Huang, Carlos H. Diaz
  • Publication number: 20080153238
    Abstract: A method for forming a MOS device on a semiconductor substrate includes steps of: forming a gate structure on the semiconductor substrate; implanting ions into the semiconductor substrate for forming one or more lightly doped drain structures adjacent to the gate structure; thermally treating the semiconductor substrate at a first temperature lower than a threshold temperature, below which no substantial transient enhanced diffusion of the lightly doped drain structures occurs, for repairing damage to the semiconductor substrate caused by the ion implantation; forming sidewall spacers to sidewalls of the gate structure on the semiconductor substrate; and forming source and drain regions adjacent to the gate structure in the semiconductor substrate.
    Type: Application
    Filed: December 21, 2006
    Publication date: June 26, 2008
    Inventors: Huan-Tsung Huang, Fung Ka Hing
  • Patent number: 7321139
    Abstract: A layout for a transistor in a standard cell is disclosed. The layout for a transistor includes an active region with at least one portion having a first edge and at least one portion having a second edge all perpendicular to a channel of the transistor; and a gate placed on top of the active region with a distance from an edge of the gate to the first edge being shorter than a distance from the edge of the gate to the second edge of the active region, wherein the active region is of a non-rectangular shape.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: January 22, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Mi-Chang Chang, Liang-Kai Han, Huan-Tsung Huang, Wen-Jya Liang, Li-Chun Tien
  • Publication number: 20070284618
    Abstract: A layout for a transistor in a standard cell is disclosed. The layout for a transistor comprises an active region with at least one portion having a first edge and at least one portion having a second edge all perpendicular to a channel of the transistor; and a gate placed on top of the active region with a distance from an edge of the gate to the first edge being shorter than a distance from the edge of the gate to the second edge of the active region, wherein the active region is of a non-rectangular shape.
    Type: Application
    Filed: May 26, 2006
    Publication date: December 13, 2007
    Inventors: Mi-Chang Chang, Liang-Kai Han, Huan-Tsung Huang, Wen-Jya Liang, Li-Chun Tien
  • Publication number: 20070114604
    Abstract: A MOS transistor structure is disclosed. A gate electrode is disposed on a semiconductor substrate. A first extension of a predetermined impurity type is substantially aligned with the gate electrode in the substrate. A second extension of the predetermined impurity type overlaps with the first extension in the substrate. The first extension has at least one lateral boundary line closer to the gate electrode than that of the second extension. Source and drain regions of the predetermined polarity type overlaps with the first and second extensions in the substrate. The second extension has at least one lateral boundary line closer to the gate electrode than that of the source and drain regions. The source and drain regions are deeper than the second extension, which is deeper than the first extension, so that they collectively reduce lateral abruptness of the source and drain, while maintaining a reduced extension resistance.
    Type: Application
    Filed: November 22, 2005
    Publication date: May 24, 2007
    Inventors: Huan-Tsung Huang, Liang-Kai Han
  • Publication number: 20050260776
    Abstract: The present disclosure provides a structure and method for determining a parasitic junction voltage that cannot be directly measured because of lack of space for a probe. For example, the method may be used with a test structure having at least two transistors pairs. The first transistor pair may include a shared source or drain associated with a parasitic junction capacitance (Csb1), and two gates spaced to enable direct measurement of Csb1. The second transistor pair may include a shared source or drain associated with a parasitic junction capacitance (Csb2), and two gates spaced to prevent direct measurement of Csb2. The method may involve measuring a first total junction capacitance (C1) of the first transistor pair, measuring Csb1, measuring a second total junction capacitance (C2) of the second transistor pair, and determining Csb2 using C1, C2, and Csb1.
    Type: Application
    Filed: May 19, 2004
    Publication date: November 24, 2005
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yin-Pin Wang, Huan-Tsung Huang
  • Patent number: 6960512
    Abstract: The present invention provides methods for manufacturing semiconductor devices. In one embodiment, the method includes forming a gate oxide over a substrate and a gate electrode over the gate oxide. The method also includes implanting impurities into the substrate using the gate electrode as an implant mask to form lightly-doped regions in the substrate. The method further includes forming a first spacer adjacent the gate electrode, and implanting impurities into the substrate and through a portion of the lightly-doped regions using the first spacer as an implant mask to form deep source/drain regions in the substrate. The method still further includes forming a second spacer adjacent the first spacer, implanting impurities into the substrate using the second spacer as an implant mask to form a graded source/drain region in the substrate, and removing the second spacer. Also disclosed is a semiconductor device constructed using the techniques disclosed herein.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: November 1, 2005
    Assignee: Taiwain Semiconductor Manufacturing Company, Ltd.
    Inventors: Shui-Ming Cheng, Ka-Hing Fung, Yin-Pin Wang, Kuan-Lun Cheng, Huan-Tsung Huang
  • Publication number: 20050186722
    Abstract: Stress in a silicon nitride contact etch stop layer on a CMOS structure having NMOS and PMOS devices is selectively relieved by selective implantation of oxygen-containing or carbon-containing ions resulting in there being no tensile stress in areas of the layer above the PMOS devices and no compressive stress in areas of the layer above the NMOS devices.
    Type: Application
    Filed: February 25, 2004
    Publication date: August 25, 2005
    Inventors: Kuan-Lun Cheng, Huan-Tsung Huang, Shui-Ming Cheng, Yin-Pin Wang, Ka-Hing Fung
  • Publication number: 20050026342
    Abstract: Semiconductor device having improved short channel effects and method of forming thereof. One method includes forming a gate oxide over a substrate and a gate electrode over the gate oxide, and implanting impurities into the substrate using the gate electrode as an implant mask to form a lightly-doped region in the substrate. The method includes depositing second spacer material adjacent to the gate electrode, forming a first spacer on the second spacer material, and implanting impurities into the substrate and through a portion of the lightly-doped region using the first spacer as an implant mask to form a first junction region in the substrate. The method includes removing the first spacer, etching the second spacer material to form a second spacer adjacent the gate electrode, and implanting impurities into the substrate using the second spacer as an implant mask to form a second junction region in the substrate.
    Type: Application
    Filed: July 28, 2003
    Publication date: February 3, 2005
    Inventors: Ka-Hing Fung, Yin-Ping Wang, Huan-Tsung Huang
  • Publication number: 20040266122
    Abstract: The present invention provides methods for manufacturing semiconductor devices. In one embodiment, the method includes forming a gate oxide over a substrate and a gate electrode over the gate oxide. The method also includes implanting impurities into the substrate using the gate electrode as an implant mask to form lightly-doped regions in the substrate. The method further includes forming a first spacer adjacent the gate electrode, and implanting impurities into the substrate and through a portion of the lightly-doped regions using the first spacer as an implant mask to form deep source/drain regions in the substrate. The method still further includes forming a second spacer adjacent the first spacer, implanting impurities into the substrate using the second spacer as an implant mask to form a graded source/drain region in the substrate, and removing the second spacer. Also disclosed is a semiconductor device constructed using the techniques disclosed herein.
    Type: Application
    Filed: June 24, 2003
    Publication date: December 30, 2004
    Inventors: Shui-Ming Cheng, Ka-Hing Fung, W.P. Wang, K.L. Cheng, Huan-Tsung Huang