Patents by Inventor Hugh M. Herr

Hugh M. Herr has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190321201
    Abstract: An artificial foot and ankle joint consists of a curved leaf spring foot member having a heel extremity and a toe extremity, and a flexible elastic ankle member that connects the foot member for rotation at the ankle joint. An actuator motor applies torque to the ankle joint to orient the foot when it is not in contact with the support surface and to store energy in a catapult spring that is released along with the energy stored in the leaf spring to propel the wearer forward. A ribbon clutch prevents the foot member from rotating in one direction beyond a predetermined limit position. A controllable damper is employed to lock the ankle joint or to absorb mechanical energy as needed. The controller and sensing mechanisms control both the actuator motor and the controllable damper at different times during the walking cycle for level walking, stair ascent, and stair descent.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Hugh M. Herr, Kwok Wai Samuel Au, Daniel Joseph Paluska, Peter Dilworth
  • Publication number: 20190307583
    Abstract: An autonomous wearable leg device employs an array of sensors embedded along a support area, whereby a controller can generate a controlling command and send a controlling command to a prosthetic, orthotic, exoskeletal or wearable component to thereby control the prosthetic, orthotic, exoskeletal or wearable component. A method for controlling autonomous wearable device collects kinetic signals from an array of sensors embedded in a prosthetic, orthotic or exoskeletal component, wherein all values are extracted from at least one feature of the collected kinetic signals, which are applied to a controller that generates a controlling command that is sent to the prosthetic, orthotic exoskeletal component to thereby control the prosthetic, orthotic or exoskeletal component during a portion of a gait cycle.
    Type: Application
    Filed: November 8, 2017
    Publication date: October 10, 2019
    Inventors: Hugh M. Herr, Roman Stolyarov, Luke M. Mooney, Cameron Taylor, Matthew Carney
  • Publication number: 20190209348
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities; (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Application
    Filed: December 31, 2018
    Publication date: July 11, 2019
    Inventors: Richard J. Casler, JR., Hugh M. Herr
  • Patent number: 10342681
    Abstract: An artificial foot and ankle joint consists of a curved leaf spring foot member having a heel extremity and a toe extremity, and a flexible elastic ankle member that connects the foot member for rotation at the ankle joint. An actuator motor applies torque to the ankle joint to orient the foot when it is not in contact with the support surface and to store energy in a catapult spring that is released along with the energy stored in the leaf spring to propel the wearer forward. A ribbon clutch prevents the foot member from rotating in one direction beyond a predetermined limit position. A controllable damper is employed to lock the ankle joint or to absorb mechanical energy as needed. The controller and sensing mechanisms control both the actuator motor and the controllable damper at different times during the walking cycle for level walking, stair ascent, and stair descent.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: July 9, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Kwok Wai Samuel Au, Daniel Joseph Paluska, Peter Dilworth
  • Publication number: 20190175365
    Abstract: A powered ankle-foot prosthesis, capable of providing human-like power at terminal stance that increase amputees metabolic walking economy compared to a conventional passive-elastic prosthesis. The powered prosthesis comprises a unidirectional spring, configured in parallel with a force-controllable actuator with series elasticity. The prosthesis is controlled to deliver the high mechanical power and net positive work observed in normal human walking.
    Type: Application
    Filed: November 6, 2018
    Publication date: June 13, 2019
    Inventors: Hugh M. Herr, Jeff A. Weber, Kwok Wai Samuel Au, Bruce Wayne Deffenbaugh, Lee Harris Magnusson, Andreas G. Hofmann, Benjamin B. Aisen
  • Patent number: 10307272
    Abstract: A model-based neuromechanical controller for a robotic limb having at least one joint includes a finite state machine configured to receive feedback data relating to the state of the robotic limb and to determine the state of the robotic limb, a muscle model processor configured to receive state information from the finite state machine and, using muscle geometry and reflex architecture information and a neuromuscular model, to determine at least one desired joint torque or stiffness command to be sent to the robotic limb, and a joint command processor configured to command the biomimetic torques and stiffnesses determined by the muscle model processor at the robotic limb joint. The feedback data is preferably provided by at least one sensor mounted at each joint of the robotic limb. In a preferred embodiment, the robotic limb is a leg and the finite state machine is synchronized to the leg gait cycle.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: June 4, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Hartmut Geyer, Michael Frederick Eilenberg
  • Publication number: 20190117415
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such, as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Application
    Filed: July 30, 2018
    Publication date: April 25, 2019
    Inventors: Hugh M. Herr, Rick Casler, Christopher M. Nook, Alexander S. Margolin, Kristin J. Size, Matthew T. Kowalczyk, Robert W. Spaller, Gregory K. Thompson, Timothy M. Dalrymple, Seth S. Kessler, David W. Murray, Christopher E. Barnhart
  • Patent number: 10213323
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: February 26, 2019
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Richard J. Casler, Jr., Hugh M. Herr
  • Publication number: 20190021880
    Abstract: A method and associated system for designing a biomechanical interface of a device contacting a biological body segment of a subject includes forming a quantitative model of the biological body segment from subject specific data, conducting a biophysical analysis, such as a finite element analysis, to thereby establish a relationship, such as a functional relationship, between the quantitative model and at least one feature of the biomechanical interface contacting the biological body segment, and applying the relationship to the at least one feature of the biomechanical interface contacting the biological body segment to thereby obtain an interface design for the mechanical interface of the device. The subject-specific data can include geometry of the biological body segment and the at least one feature can be associated with physiological benefit of the biological body segment.
    Type: Application
    Filed: January 12, 2017
    Publication date: January 24, 2019
    Inventors: Hugh M. Herr, Kevin Mattheus Moerman, David Moinina Sengeh
  • Publication number: 20190021883
    Abstract: Proprioceptive feedback is provided in a residual limb of a person that includes forming a linkage between a pair of agonist and antagonist muscles, forming a sliding surface over which the agonist and antagonist muscles slide. The sliding surface can include a synovial sleeve, a bridge formed between the distal ends of bones, or a fixture that is osseointegrated into the bone. The invention also includes a system for transdermal electrical communication in a person that includes a percutaneous access device, a sensory device that communicates signals between a muscle and the percutaneous device, and a stimulation device in communication with the percutaneous access device. In another embodiment, a closed-loop functional stimulation system restores lost functionality to a person that suffers from impairment of a neurological control system or at least partial loss of a limb.
    Type: Application
    Filed: January 6, 2017
    Publication date: January 24, 2019
    Inventors: Hugh M. Herr, Tyler Clites, Benjamin Maimon, Anthony Zorzos, Matthew J. Carty, Jean-Francois Duval
  • Patent number: 10137011
    Abstract: A powered ankle-foot prosthesis, capable of providing human-like power at terminal stance that increase amputees metabolic walking economy compared to a conventional passive-elastic prosthesis. The powered prosthesis comprises a unidirectional spring, configured in parallel with a force-controllable actuator with series elasticity. The prosthesis is controlled to deliver the high mechanical power and net positive work observed in normal human walking.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: November 27, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Jeff A. Weber, Kwok Wai Samuel Au, Bruce Wayne Deffenbaugh, Lee Harris Magnusson, Andreas G. Hofmann, Benjamin B. Aisen
  • Patent number: 10070974
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: September 11, 2018
    Assignee: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Hugh M. Herr, Rick Casler, Christopher M. Nook, Alexander S. Margolin, Kristin J. Size, Matthew T. Kowalczyk, Robert W. Spaller, Gregory K. Thompson, Timothy M. Dalrymple, Seth S. Kessler, David W. Murray, Christopher E. Barnhart
  • Patent number: 9975249
    Abstract: A neuromuscular model-based controller for a robotic limb having at least one joint includes a neuromuscular model having a muscle model, muscle geometry and reflex feedback loop to determine at least one torque or impedance command to be sent to the robotic limb. One or more parameters that determine relation between feedback data and activation of the muscle model are adjusted consequent to sensory data from at least one of an intrinsic sensor and an extrinsic sensor. A controller in communication with the neuromuscular model is configured to receive the at least one torque or impedance command and controls at least one of position, torque and impedance of the robotic limb joint.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: May 22, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Ken Endo, Pavitra Krishnaswamy, Jared Markowitz, Michael Frederick Eilenberg, Jing Wang
  • Publication number: 20170354529
    Abstract: A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint. A controller estimates terrain slope and modulates the augmentation torque and the impedance according to a phase of the gait cycle and the estimated terrain slope to provide at least a biomimetic response. The controller may also modulate a joint equilibrium. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain, and can be used, for example, as a knee orthosis, prosthesis, or exoskeleton.
    Type: Application
    Filed: May 22, 2017
    Publication date: December 14, 2017
    Inventors: Zhixiu HAN, Christopher Williams, Jeff Anthony Weber, Christopher Eric Barnhart, Hugh M. Herr, Richard James Casler, JR.
  • Patent number: 9839552
    Abstract: A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint, and a controller that modulates the augmentation torque, the impedance, and a joint equilibrium according to a phase of the gait cycle to provide at least a biomimetic response. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: December 12, 2017
    Assignee: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Zhixiu Han, Christopher E. Barnhart, Hugh M. Herr, Christopher Williams, Jeff A. Weber, Richard J. Casler, Jr.
  • Publication number: 20170348176
    Abstract: A mechanical transmission, tethered actuation system, an autonomous ankle exoskeleton design and method of their use employing a cable, pulleys and associated pulley housings to change angular transmission of linear force on the cable. The pulleys are linked by a ground link and the cable is threaded across and between the pulleys, whereby rotation of either of the pulleys in one direction causes rotation of the other pulley in the opposite direction. Independently of the pulleys, the pulley housings can freely rotate about associated pulleys, and a link between the pulley housings is provided, whereby rotation of one of the pulley housings in one direction causes rotation of the other pulley housing at an equivalent angle in the opposite direction, thereby enabling a change in transmission angle of linear force on the cable threaded across and between the pulleys and the associated pulley housing essentially without resistance.
    Type: Application
    Filed: June 2, 2017
    Publication date: December 7, 2017
    Inventors: Hugh M. Herr, Jiun-Yih Kuan
  • Publication number: 20170319369
    Abstract: A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint, and a controller that modulates the augmentation torque, the impedance, and a joint equilibrium according to a phase of the gait cycle to provide at least a biomimetic response. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain.
    Type: Application
    Filed: July 19, 2017
    Publication date: November 9, 2017
    Inventors: Zhixiu Han, Christopher Williams, Jeff Anthony Weber, Christopher Eric Barnhart, Hugh M. Herr, Richard James Casler, JR.
  • Publication number: 20170246492
    Abstract: Running in a mammal, such as a human, is augmented by adaptively modulating anticipation of maximum leg extension of a mammal when running, and actuating an exoskeletal clutch linked in series to at least one elastic element, wherein the clutch and elastic element form an exoskeleton and are attached in parallel to at least one muscle-tendon unit of a leg of the mammal and span at least one joint of the mammal fitted with the exoskeleton. The exoskeletal clutch is actuated in advance of a predicted maximum extension of the exoskeletal clutch to thereby cause the exoskeletal clutch to lock essentially simultaneously with ground strike by the leg of the mammal. The elastic element is thereby engaged during stance phase of the gait of the mammal while running, and subsequently is disengaged prior to or during the swing phase of the gait of the mammal, thereby augmenting running of the mammal.
    Type: Application
    Filed: May 16, 2017
    Publication date: August 31, 2017
    Inventors: Hugh M. Herr, Grant Elliott, Andrew Marecki, Hazel Briner
  • Patent number: 9687377
    Abstract: A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint. A controller estimates terrain slope and modulates the augmentation torque and the impedance according to a phase of the gait cycle and the estimated terrain slope to provide at least a biomimetic response. The controller may also modulate a joint equilibrium. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain, and can be used, for example, as a knee orthosis, prosthesis, or exoskeleton.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: June 27, 2017
    Assignee: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Zhixiu Han, Christopher Williams, Jeff A. Weber, Christopher E. Barnhart, Hugh M. Herr, Richard J. Casler, Jr.
  • Patent number: 9682005
    Abstract: Running in a mammal, such as a human, is augmented by adaptively modulating anticipation of maximum leg extension of a mammal when running, and actuating an exoskeletal clutch linked in series to at least one elastic element, wherein the clutch and elastic element form an exoskeleton and are attached in parallel to at least one muscle-tendon unit of a leg of the mammal and span at least one joint of the mammal fitted with the exoskeleton. The exoskeletal clutch is actuated in advance of a predicted maximum extension of the exoskeletal clutch to thereby cause the exoskeletal clutch to lock essentially simultaneously with ground strike by the leg of the mammal. The elastic element is thereby engaged during stance phase of the gait of the mammal while running, and subsequently is disengaged prior to or during the swing phase of the gait of the mammal, thereby augmenting running of the mammal.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: June 20, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Grant Elliott, Andrew Marecki, Hazel Briner