Patents by Inventor Huicheng Chang

Huicheng Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136228
    Abstract: A nanoFET transistor includes doped channel junctions at either end of a channel region for one or more nanosheets of the nanoFET transistor. The channel junctions are formed by a iterative recessing and implanting process which is performed as recesses are made for the source/drain regions. The implanted doped channel junctions can be controlled to achieve a desired lateral straggling of the doped channel junctions.
    Type: Application
    Filed: January 2, 2024
    Publication date: April 25, 2024
    Inventors: Yu-Chang Lin, Chun-Feng Nieh, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20240136220
    Abstract: A method includes forming a first plurality of fins in a first region of a substrate, a first recess being interposed between adjacent fins in the first region of the substrate, the first recess having a first depth and a first width, forming a second plurality of fins in a second region of the substrate, a second recess being interposed between adjacent fins in the second region of the substrate, the second recess having a second depth and a second width, the second width of the second recess being less than the first width of the first recess, the second depth of the second recess being less than the first depth of the first recess, forming a first dielectric layer in the first recess and the second recess, and converting the first dielectric layer in the first recess and the second recess to a treated dielectric layer.
    Type: Application
    Filed: January 2, 2024
    Publication date: April 25, 2024
    Inventors: Szu-Ying Chen, Sen-Hong Syue, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20240120314
    Abstract: Methods of ion implantation combined with annealing using a pulsed laser or a furnace for cutting substrate in forming semiconductor devices and semiconductor devices including the same are disclosed. In an embodiment, a method includes forming a transistor structure of a device on a first semiconductor substrate; forming a front-side interconnect structure over a front side of the transistor structure; bonding a carrier substrate to the front-side interconnect structure; implanting ions into the first semiconductor substrate to form an implantation region of the first semiconductor substrate; and removing the first semiconductor substrate. Removing the first semiconductor substrate includes applying an annealing process to separate the implantation region from a remainder region of the first semiconductor substrate. The method also includes forming a back-side interconnect structure over a back side of the transistor structure.
    Type: Application
    Filed: December 20, 2023
    Publication date: April 11, 2024
    Inventors: Huicheng Chang, Jyh-Cherng Sheu, Chen-Fong Tsai, Yun Chen Teng, Han-De Chen, Yee-Chia Yeo
  • Patent number: 11955553
    Abstract: Embodiments disclosed herein relate to using an implantation process and a melting anneal process performed on a nanosecond scale to achieve a high surface concentration (surface pile up) dopant profile and a retrograde dopant profile simultaneously. In an embodiment, a method includes forming a source/drain structure in an active area on a substrate, the source/drain structure including a first region comprising germanium, implanting a first dopant into the first region of the source/drain structure to form an amorphous region in at least the first region of the source/drain structure, implanting a second dopant into the amorphous region containing the first dopant, and heating the source/drain structure to liquidize and convert at least the amorphous region into a crystalline region, the crystalline region containing the first dopant and the second dopant.
    Type: Grant
    Filed: February 24, 2023
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Wen-Yen Chen, Ying-Lang Wang, Liang-Yin Chen, Li-Ting Wang, Huicheng Chang
  • Publication number: 20240096897
    Abstract: In an embodiment, a device includes: a first semiconductor fin extending from a substrate; a second semiconductor fin extending from the substrate; a hybrid fin over the substrate, the second semiconductor fin disposed between the first semiconductor fin and the hybrid fin; a first isolation region between the first semiconductor fin and the second semiconductor fin; and a second isolation region between the second semiconductor fin and the hybrid fin, a top surface of the second isolation region disposed further from the substrate than a top surface of the first isolation region.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 21, 2024
    Inventors: Po-Kang Ho, Tsai-Yu Huang, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20240096677
    Abstract: A method of correcting a misalignment of a wafer on a wafer holder and an apparatus for performing the same are disclosed. In an embodiment, a semiconductor alignment apparatus includes a wafer stage; a wafer holder over the wafer stage; a first position detector configured to detect an alignment of a wafer over the wafer holder in a first direction; a second position detector configured to detect an alignment of the wafer over the wafer holder in a second direction; and a rotational detector configured to detect a rotational alignment of the wafer over the wafer holder.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Chia-Cheng Chen, Chih-Kai Yang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11935793
    Abstract: A method includes forming a source/drain region in a semiconductor fin; after forming the source/drain region, implanting first impurities into the source/drain region; and after implanting the first impurities, implanting second impurities into the source/drain region. The first impurities have a lower formation enthalpy than the second impurities. The method further includes after implanting the second impurities, annealing the source/drain region.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Chang Lin, Tien-Shun Chang, Chun-Feng Nieh, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20240088225
    Abstract: A method includes forming a gate stack on a first portion of a semiconductor substrate, removing a second portion of the semiconductor substrate on a side of the gate stack to form a recess, growing a semiconductor region starting from the recess, implanting the semiconductor region with an impurity, and performing a melt anneal on the semiconductor region. At least a portion of the semiconductor region is molten during the melt anneal.
    Type: Application
    Filed: November 14, 2023
    Publication date: March 14, 2024
    Inventors: Su-Hao Liu, Wen-Yen Chen, Li-Heng Chen, Li-Ting Wang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Ying-Lang Wang
  • Publication number: 20240079278
    Abstract: A method includes forming a pad layer. The pad layer includes a first portion over a first part of a semiconductor substrate, and a second portion over a second part of the semiconductor substrate. The first portion has a first thickness, and the second portion has a second thickness smaller than the first thickness. The semiconductor substrate is then annealed to form a first oxide layer over the first part of the semiconductor substrate, and a second oxide layer over the second part of the semiconductor substrate. The pad layer, the first oxide layer, and the second oxide layer are removed. A semiconductor layer is epitaxially grown over and contacting the first part and the second part of the semiconductor substrate.
    Type: Application
    Filed: January 6, 2023
    Publication date: March 7, 2024
    Inventors: Jhih-Yong Han, Wen-Yen Chen, Yi-Ting Wu, Tsai-Yu Huang, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11923366
    Abstract: In an embodiment, a device includes: a first semiconductor fin extending from a substrate; a second semiconductor fin extending from the substrate; a hybrid fin over the substrate, the second semiconductor fin disposed between the first semiconductor fin and the hybrid fin; a first isolation region between the first semiconductor fin and the second semiconductor fin; and a second isolation region between the second semiconductor fin and the hybrid fin, a top surface of the second isolation region disposed further from the substrate than a top surface of the first isolation region.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Kang Ho, Tsai-Yu Huang, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20240072128
    Abstract: A method of forming a semiconductor device includes forming a source/drain region and a gate electrode adjacent the source/drain region, forming a hard mask over the gate electrode, forming a bottom mask over the source/drain region, wherein the gate electrode is exposed, and performing a nitridation process on the hard mask over the gate electrode. The bottom mask remains over the source/drain region during the nitridation process and is removed after the nitridation. The method further includes forming a silicide over the source/drain region after removing the bottom mask.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Inventors: Tsan-Chun Wang, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11915942
    Abstract: A method of exposing a wafer to a high-tilt angle ion beam and an apparatus for performing the same are disclosed. In an embodiment, a method includes forming a patterned mask layer over a wafer, the patterned mask layer including a patterned mask feature; exposing the wafer to an ion beam, a surface of the wafer being tilted at a tilt angle with respect to the ion beam; and moving the wafer along a scan line with respect to the ion beam, a scan angle being defined between the scan line and an axis perpendicular to an axis of the ion beam, a difference between the tilt angle and the scan angle being less than 50°.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: February 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Cheng Chen, Wei-Ting Chien, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11908708
    Abstract: A method includes bonding a package component to a composite carrier. The composite carrier includes a base carrier and an absorption layer, and the absorption layer is between the base carrier and the package component. A laser beam is projected onto the composite carrier. The laser beam penetrates through the base carrier to ablate the absorption layer. The base carrier may then be separated from the package component.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Huicheng Chang, Jyh-Cherng Sheu, Chen-Fong Tsai, Yun Chen Teng, Han-De Chen, Yee-Chia Yeo
  • Patent number: 11908740
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a gate structure over a substrate. The semiconductor structure also includes source/drain structures on opposite sides of the gate structure. The semiconductor structure also includes a dielectric layer over the gate structure and the source/drain structures. The semiconductor structure also includes a via plug passing through the dielectric layer and including a first group IV element. The dielectric layer includes a second group IV element, a first compound, and a second compound, and the second compound includes elements in the first compound and the first group IV element.
    Type: Grant
    Filed: November 25, 2022
    Date of Patent: February 20, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung-Po Hsieh, Su-Hao Liu, Hong-Chih Liu, Jing-Huei Huang, Jie-Huang Huang, Lun-Kuang Tan, Huicheng Chang, Liang-Yin Chen, Kuo-Ju Chen
  • Patent number: 11908751
    Abstract: In an embodiment, a method includes: etching a trench in a substrate; depositing a liner material in the trench with an atomic layer deposition process; depositing a flowable material on the liner material and in the trench with a contouring flowable chemical vapor deposition process; converting the liner material and the flowable material to a solid insulation material, a portion of the trench remaining unfilled by the solid insulation material; and forming a hybrid fin in the portion of the trench unfilled by the solid insulation material.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Szu-Ying Chen, Sen-Hong Syue, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20240055480
    Abstract: A method includes forming fin structures upwardly extending above a semiconductor substrate; conformally depositing a first dielectric layer over the fin structures; depositing a flowable oxide over the first dielectric layer and between the fin structures; performing, at a temperature lower than about 500° C., a steam annealing process on the flowable oxide to cure the flowable oxide; after performing the steam annealing process, etching the cured flowable oxide until a top surface of the cured flowable oxide is lower than top surfaces of the fin structures; forming a second dielectric layer over the cured flowable oxide; forming a first gate structure extending across a first one of the fin structures and a second gate structure extending across a second one of the fin structures; forming first sources/drain regions on the first one of the fin structures and second sources/drain regions on the second one of the fin structures.
    Type: Application
    Filed: August 12, 2022
    Publication date: February 15, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yun Chen TENG, Chen-Fong TSAI, Li-Chi YU, Huicheng CHANG, Yee-Chia YEO
  • Publication number: 20240055300
    Abstract: A method includes forming a fin structure over a substrate; depositing a dummy gate layer over the substrate and the fin structure; depositing a hard mask stack over the dummy gate layer; depositing a photoresist bottom layer over the hard mask stack, wherein the photoresist bottom layer has a first stress; performing an implantation process to the photoresist bottom layer to form an implanted bottom layer with a second stress closer to 0 than the first stress; patterning the implanted bottom layer; patterning the hard mask stack and the dummy gate layer by using the patterned implanted bottom layer as an etch mask to form a dummy gate structure over the fin structure; and replacing the dummy gate structure with a metal gate structure.
    Type: Application
    Filed: August 12, 2022
    Publication date: February 15, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Ting CHANG, Kuo-Ju CHEN, Tien-Shun CHANG, Su-Hao LIU, Huicheng CHANG
  • Patent number: 11901455
    Abstract: A device includes a fin extending from a semiconductor substrate; a gate stack over the fin; a first spacer on a sidewall of the gate stack; a source/drain region in the fin adjacent the first spacer; an inter-layer dielectric layer (ILD) extending over the gate stack, the first spacer, and the source/drain region, the ILD having a first portion and a second portion, wherein the second portion of the ILD is closer to the gate stack than the first portion of the ILD; a contact plug extending through the ILD and contacting the source/drain region; a second spacer on a sidewall of the contact plug; and an air gap between the first spacer and the second spacer, wherein the first portion of the ILD extends across the air gap and physically contacts the second spacer, wherein the first portion of the ILD seals the air gap.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Kai-Hsuan Lee, I-Hsieh Wong, Cheng-Yu Yang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Syun-Ming Jang, Meng-Han Chou
  • Patent number: 11901218
    Abstract: A method includes forming a first plurality of fins in a first region of a substrate, a first recess being interposed between adjacent fins in the first region of the substrate, the first recess having a first depth and a first width, forming a second plurality of fins in a second region of the substrate, a second recess being interposed between adjacent fins in the second region of the substrate, the second recess having a second depth and a second width, the second width of the second recess being less than the first width of the first recess, the second depth of the second recess being less than the first depth of the first recess, forming a first dielectric layer in the first recess and the second recess, and converting the first dielectric layer in the first recess and the second recess to a treated dielectric layer.
    Type: Grant
    Filed: April 7, 2022
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Szu-Ying Chen, Sen-Hong Syue, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11901189
    Abstract: To reduce a thickness variation of a spin-on coating (SOC) layer that is applied over a plurality of first and second trenches with different pattern densities as a bottom layer in a photoresist stack, a two-step thermal treatment process is performed on the SOC layer. A first thermal treatment step in the two-step thermal treatment process is conducted at a first temperature below a cross-linking temperature of the SOC layer to cause flow of the SOC layer, and a second thermal treatment step in the two-step thermal treatment process is conducted at a second temperature to cause cross-linking of the SOC layer.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: February 13, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chen-Fong Tsai, Ya-Lun Chen, Tsai-Yu Huang, Yahru Cheng, Huicheng Chang, Yee-Chia Yeo