Patents by Inventor Huicheng Chang

Huicheng Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230386852
    Abstract: To reduce a thickness variation of a spin-on coating (SOC) layer that is applied over a plurality of first and second trenches with different pattern densities as a bottom layer in a photoresist stack, a two-step thermal treatment process is performed on the SOC layer. A first thermal treatment step in the two-step thermal treatment process is conducted at a first temperature below a cross-linking temperature of the SOC layer to cause flow of the SOC layer, and a second thermal treatment step in the two-step thermal treatment process is conducted at a second temperature to cause cross-linking of the SOC layer.
    Type: Application
    Filed: August 8, 2023
    Publication date: November 30, 2023
    Inventors: Chen-Fong TSAI, Ya-Lun CHEN, Tsai-Yu HUANG, Yahru CHENG, Huicheng CHANG, Yee-Chia YEO
  • Publication number: 20230386847
    Abstract: Embodiment described herein provide a thermal treatment process following a high-pressure anneal process to keep hydrogen at an interface between a channel region and a gate dielectric layer in a field effect transistor while removing hydrogen from the bulk portion of the gate dielectric layer. The thermal treatment process can reduce the amount of threshold voltage shift caused by a high-pressure anneal. The high-pressure anneal and the thermal treatment process may be performed any time after formation of the gate dielectric layer, thus, causing no disruption to the existing process flow.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 30, 2023
    Inventors: Hongfa Luan, Yi-Fan Chen, Chun-Yen Peng, Cheng-Po Chau, Wen-Yu Ku, Huicheng Chang
  • Publication number: 20230387251
    Abstract: A method for manufacturing a semiconductor device includes: forming a patterned structure on a substrate, the patterned structure including a dielectric layer and a dummy gate structure disposed in the dielectric layer; and subjecting the patterned structure to an ion implantation process so as to modulate a profile of the dummy gate structure.
    Type: Application
    Filed: May 25, 2022
    Publication date: November 30, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tien-Shun CHANG, Kuo-Ju CHEN, Sih-Jie LIU, Wei-Fu WANG, Yi-Chao WANG, Li-Ting WANG, Su-Hao LIU, Huicheng CHANG, Yee-Chia YEO
  • Publication number: 20230377913
    Abstract: Embodiments of an ion cryo-implantation process utilize a post implantation heating stage to heat the implanted wafer while under the heavy vacuum used during cryo-implantation. The implanted wafer is then transferred to load locks which are held at a lesser vacuum than the heavy vacuum.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 23, 2023
    Inventors: Yu-Chang Lin, Tien-Shun Chang, Chun-Feng Nieh, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230378000
    Abstract: In an embodiment, a method includes: etching a trench in a substrate; depositing a liner material in the trench with an atomic layer deposition process; depositing a flowable material on the liner material and in the trench with a contouring flowable chemical vapor deposition process; converting the liner material and the flowable material to a solid insulation material, a portion of the trench remaining unfilled by the solid insulation material; and forming a hybrid fin in the portion of the trench unfilled by the solid insulation material.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Inventors: Szu-Ying Chen, Sen-Hong Syue, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230378257
    Abstract: The present disclosure is directed to a method for the fabrication of isolation structures between source/drain (S/D) epitaxial structures of stacked transistor structures. The method includes depositing an oxygen-free dielectric material in an opening over a first epitaxial structure, where the oxygen-free dielectric material covers top surfaces of the first epitaxial structure and sidewall surfaces of the opening. The method also includes exposing the oxygen-free dielectric material to an oxidizing process to oxidize the oxygen-free dielectric material so that the oxidizing process does not oxidize a portion of the oxygen-free dielectric material on the first epitaxial structure. Further, etching the oxidized oxygen-free dielectric material and forming a second epitaxial layer on the oxygen-free dielectric material not removed by the etching to substantially fill the opening.
    Type: Application
    Filed: July 28, 2023
    Publication date: November 23, 2023
    Applicant: Taiwan Semiconductor Manufactoring Co., Ltd.
    Inventors: Mrunal Abhijith KHADERBAD, Dhanyakumar Mahaveer Sathaiya, Huicheng Chang, Ko-Feng Chen, Keng-Chu Lin
  • Publication number: 20230378261
    Abstract: In an embodiment, a method of forming a semiconductor device includes: forming a first oxide layer over a semiconductor fin structure; performing a first nitridation process to convert the first oxide layer to an oxynitride layer; depositing a silicon-containing layer over the oxynitride layer; performing a first anneal on the silicon-containing layer, wherein after performing the first anneal, the oxynitride layer has a higher nitrogen atomic concentration at an interface with the semiconductor fin structure than in a bulk region of the oxynitride layer; and forming a dummy gate structure over the silicon-containing layer.
    Type: Application
    Filed: May 23, 2022
    Publication date: November 23, 2023
    Inventors: Hsuan-Hsiao Yao, Po-Kai Hsiao, Fan-Cheng Lin, Tsai-Yu Huang, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230377914
    Abstract: An annealing apparatus includes: a first chamber including a first gas having a first gas pressure; a second chamber configured to receive a second gas having a second gas pressure; gas inlets; gas vents; heating elements laterally surrounding the first chamber; and a controller configured to perform the steps of: heating the first chamber while keeping a gas pressure difference between the first gas pressure and the second gas pressure is within a tolerance limit; and cooling the first chamber by exchanging the second gas in the second chamber while keeping the gas pressure difference within the tolerance limit, wherein the exchanging of the second gas includes introducing the second gas to the second chamber through the plurality of gas inlets and exhausting a the second gas out of the second chamber through the plurality of gas vents while keeping the second gas pressure unchanged.
    Type: Application
    Filed: August 4, 2023
    Publication date: November 23, 2023
    Inventors: YI-FAN CHEN, SEN-HONG SYUE, HUICHENG CHANG, YEE-CHIA YEO
  • Publication number: 20230378001
    Abstract: In an embodiment, a device includes: a first semiconductor strip over a substrate, the first semiconductor strip including a first channel region; a second semiconductor strip over the substrate, the second semiconductor strip including a second channel region; a dielectric strip disposed between the first semiconductor strip and the second semiconductor strip, a width of the dielectric strip decreasing along a first direction extending away from the substrate, the dielectric strip including a void; and a gate structure extending along the first channel region, along the second channel region, and along a top surface and sidewalls of the dielectric strip.
    Type: Application
    Filed: August 4, 2023
    Publication date: November 23, 2023
    Inventors: Tsai-Yu Huang, Han-De Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230369055
    Abstract: The present disclosure provides a method to enlarge the process window for forming a source/drain contact. The method may include receiving a workpiece that includes a source/drain feature exposed in a source/drain opening defined between two gate structures, conformally depositing a dielectric layer over sidewalls of the source/drain opening and a top surface of the source/drain feature, anisotropically etching the dielectric layer to expose the source/drain feature, performing an implantation process to the dielectric layer, and after the performing of the implantation process, performing a pre-clean process to the workpiece. The implantation process includes a non-zero tilt angle.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Inventors: Meng-Han Chou, Kuan-Yu Yeh, Wei-Yip Loh, Hung-Hsu Chen, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230369335
    Abstract: The present disclosure describes a semiconductor device and methods for forming the same. The semiconductor device includes a first transistor device of a first type and a second transistor device of a second type. The first transistor device includes first nanostructures, a first pair of source/drain structures, and a first gate structure on the first nanostructures. The second transistor device of a second type is formed over the first transistor device. The second transistor device includes second nanostructures over the first nanostructures, a second pair of source/drain structures over the first pair of source/drain structures, and a second gate structure on the second nanostructures and over the first nanostructures. The semiconductor device further includes a first isolation structure in contact with the first and second nanostructures and a second isolation structure in contact with a top surface of the first pair of source/drain structures.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Mrunal Abhijith KHADERBAD, Sathaiya Mahaveer DHANYAKUMAR, Huicheng CHANG, Keng-Chu LIN
  • Publication number: 20230369103
    Abstract: A connecting structure includes a first dielectric layer disposed over a substrate and a conductive feature, a doped dielectric layer disposed over the first dielectric layer, a first metal portion disposed in the first dielectric layer and in contact with the conductive feature, and a doped metal portion disposed over the first metal portion. The first metal portion and the doped metal portion include a same noble metal material. The doped dielectric layer and the doped metal portion include same dopants.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Inventors: Kuo-Ju Chen, Chun-Hsien Huang, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230352533
    Abstract: The present disclosure relates generally to doping for conductive features in a semiconductor device. In an example, a structure includes an active region of a transistor. The active region includes a source/drain region, and the source/drain region is defined at least in part by a first dopant having a first dopant concentration. The source/drain region further includes a second dopant with a concentration profile having a consistent concentration from a surface of the source/drain region into a depth of the source/drain region. The consistent concentration is greater than the first dopant concentration. The structure further includes a conductive feature contacting the source/drain region at the surface of the source/drain region.
    Type: Application
    Filed: July 12, 2023
    Publication date: November 2, 2023
    Inventors: Su-Hao Liu, Huicheng Chang, Chia-Cheng Chen, Liang-Yin Chen, Kuo-Ju Chen, Chun-Hung Wu, Chang-Miao Liu, Huai-Tei Yang, Lun-Kuang Tan, Wei-Ming You
  • Patent number: 11798985
    Abstract: The present disclosure is directed to a method for the fabrication of isolation structures between source/drain (S/D)) epitaxial structures of stacked transistor structures. The method includes depositing an oxygen-free dielectric material in an opening over a first epitaxial structure, where the oxygen-free dielectric material covers top surfaces of the first epitaxial structure and sidewall surfaces of the opening. The method also includes exposing the oxygen-free dielectric material to an oxidizing process to oxidize the oxygen-free dielectric material so that the oxidizing process does not oxidize a portion of the oxygen-free dielectric material on the first epitaxial structure. Further, etching the oxidized oxygen-free dielectric material and forming a second epitaxial layer on the oxygen-free dielectric material not removed by the etching to substantially the opening.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: October 24, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Mrunal Abhijith Khaderbad, Dhanyakumar Mahaveer Sathaiya, Huicheng Chang, Ko-Feng Chen, Keng-Chu Lin
  • Patent number: 11796922
    Abstract: In a method of forming a pattern, a photo resist layer is formed over an underlying layer, the photo resist layer is exposed to an actinic radiation carrying pattern information, the exposed photo resist layer is developed to form a developed resist pattern, a directional etching operation is applied to the developed resist pattern to form a trimmed resist pattern, and the underlying layer is patterned using the trimmed resist pattern as an etching mask.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: October 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ru-Gun Liu, Huicheng Chang, Chia-Cheng Chen, Jyu-Horng Shieh, Liang-Yin Chen, Shu-Huei Suen, Wei-Liang Lin, Ya Hui Chang, Yi-Nien Su, Yung-Sung Yen, Chia-Fong Chang, Ya-Wen Yeh, Yu-Tien Shen
  • Publication number: 20230335401
    Abstract: A method is disclosed that includes performing a directional ion implantation process on a developed resist pattern to reduce roughness. A substrate can be tilted at a tilt angle with respect to the direction of an incoming ion beam. Ions can be directionally implanted at the tilt angle, along sidewall surfaces of the developed resist pattern to trim roughness from the sidewall surfaces. After implanting, the substrate can be rotated along the axis normal to a surface, and ions can then be directionally implanted at the tilt angle along the sidewall surfaces to further trim roughness from the sidewall surfaces of the developed resist pattern. The directional ion implantation process can be performed over a number of iterations, and during each iteration of the directional ion implantation process, the tilt angle can be adjusted so that the tilt angle is different than during previous iterations.
    Type: Application
    Filed: April 14, 2022
    Publication date: October 19, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Liang Chen, Wei-Ting Chien, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11791204
    Abstract: A connecting structure includes a first dielectric layer disposed over a substrate and a conductive feature, a doped dielectric layer disposed over the first dielectric layer, a first metal portion disposed in the first dielectric layer and in contact with the conductive feature, and a doped metal portion disposed over the first metal portion. The first metal portion and the doped metal portion include a same noble metal material. The doped dielectric layer and the doped metal portion include same dopants.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: October 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Ju Chen, Chun-Hsien Huang, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230326788
    Abstract: A method includes forming a semiconductor fin protruding over a substrate; forming an isolation structure over the substrate; depositing a first metal oxide layer over the isolation structure; depositing a first oxide layer over the first metal oxide layer; depositing a second metal oxide layer over the first oxide layer, in which the first metal oxide layer and the second metal oxide layer comprise amorphous structures; performing a chemical mechanism polishing (CMP) process to the first metal oxide layer, the first oxide layer, and the second metal oxide layer; after the CMP process is completed, performing an annealing process such that the first metal oxide layer and the second metal oxide layer are transferred from the amorphous structures into crystalline structures; forming a gate structure over the semiconductor fin; and forming source/drain structures over the substrate and on opposite sides of the gate structure.
    Type: Application
    Filed: April 12, 2022
    Publication date: October 12, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Fan-Cheng LIN, Po-Kai HSIAO, Tsai-Yu HUANG, Huicheng CHANG, Yee-Chia YEO
  • Publication number: 20230317519
    Abstract: The present disclosure provides methods for forming conductive features in a dielectric layer without using adhesion layers or barrier layers and devices formed thereby. In some embodiments, a structure comprising a dielectric layer over a substrate, and a conductive feature disposed through the dielectric layer. The dielectric layer has a lower surface near the substrate and a top surface distal from the substrate. The conductive feature is in direct contact with the dielectric layer, and the dielectric layer comprises an implant species. A concentration of the implant species in the dielectric layer has a peak concentration proximate the top surface of the dielectric layer, and the concentration of the implant species decreases from the peak concentration in a direction towards the lower surface of the dielectric layer.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 5, 2023
    Inventors: Li-Chieh Wu, Tang-Kuei Chang, Kuo-Hsiu Wei, Kei-Wei Chen, Ying-Lang Wang, Su-Hao Liu, Kuo-Ju Chen, Liang-Yin Chen, Huicheng Chang, Ting-Kui Chang, Chia Hsuan Lee
  • Patent number: 11776810
    Abstract: A method for forming a semiconductor device is provided. In some embodiments, the method includes forming a target layer over a semiconductor substrate, forming a carbon-rich hard masking layer over the target layer, patterning features in the carbon-rich hard masking layer using an etching process, performing a directional ion beam trimming process on the features patterned in the carbon-rich hard masking layer, and patterning the target layer using the carbon-rich hard masking layer as a mask.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: October 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Cheng Chen, Chun-Hung Wu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Chun-Yen Chang, Chih-Kai Yang, Yu-Tien Shen, Ya Hui Chang