Patents by Inventor Hui-Chi Huang

Hui-Chi Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11964358
    Abstract: A method includes placing a polisher head on platen, the polisher head including a set of first magnets, and controlling a set of second magnets to rotate the polisher head on the platen, wherein controlling the set of second magnets includes reversing the polarity of at least one second magnet of the set of second magnets to produce a magnetic force on at least one first magnet of the set of first magnets, wherein the set of second magnets are external to the polisher head.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: April 23, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shang-Yu Wang, Chun-Hao Kung, Ching-Hsiang Tsai, Kei-Wei Chen, Hui-Chi Huang
  • Publication number: 20240087951
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first metal layer over a substrate, forming a dielectric layer over the first metal layer. The method includes forming a trench in the dielectric layer, and performing a surface treatment process on a sidewall surface of the trench to form a hydrophobic layer. The hydrophobic layer is formed on a sidewall surface of the dielectric layer. The method further includes depositing a metal material in the trench and over the hydrophobic layer to form a via structure.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Inventors: Chun-Hao Kung, Chih-Chieh Chang, Kao-Feng Liao, Hui-Chi Huang, Kei-Wei Chen
  • Patent number: 11923405
    Abstract: The present disclosure is directed to a semiconductor device. The semiconductor device includes a substrate, an insulating layer disposed on the substrate, a first conductive feature disposed in the insulating layer, and a capacitor structure disposed on the insulating layer. The capacitor structure includes a first electrode, a first dielectric layer, a second electrode, a second dielectric layer, and a third electrode sequentially stacked. The semiconductor device also includes a first via connected to the first electrode and the third electrode, a second via connected to the second electrode, and a third via connected to the first conductive feature. A part of the first via is disposed in the insulating layer. A portion of the first conductive feature is directly under the capacitor structure.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Chih-Fan Huang, Hung-Chao Kao, Yuan-Yang Hsiao, Tsung-Chieh Hsiao, Hsiang-Ku Shen, Hui-Chi Chen, Dian-Hau Chen, Yen-Ming Chen
  • Publication number: 20240050995
    Abstract: A process tool including a polishing pad on a top surface of a wafer platen. A wafer carrier is configured to hold a wafer over the polishing pad. A slurry dispenser is configured to dispense an abrasive slurry including a plurality of charged abrasive particles having a first polarity onto the polishing pad. A first conductive rod is within the wafer platen and coupled to a first voltage supply. A wafer roller is configured to support the wafer. A first wafer brush is arranged beside the wafer roller. A second conductive rod is within the first wafer brush and coupled to a second voltage supply. The first voltage supply is configured to apply a first charge having a second polarity, opposite the first polarity, to the first conductive rod. The second voltage supply is configured to apply a second charge having the second polarity to the second conductive rod.
    Type: Application
    Filed: August 15, 2022
    Publication date: February 15, 2024
    Inventors: Chih-Wen Liu, Yeo-Sin Lin, Shu-Wei Hsu, Che-Hao Tu, Hui-Chi Huang, Kei-Wei Chen
  • Patent number: 11850704
    Abstract: Provided herein are chemical-mechanical planarization (CMP) systems and methods to reduce metal particle pollution on dressing disks and polishing pads. Such methods may include contacting a dressing disk and at least one conductive element with an electrolyte solution and applying direct current (DC) power to the dressing disk and the at least one conductive element.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Chieh Chang, Yen-Ting Chen, Hui-Chi Huang, Kei-Wei Chen
  • Patent number: 11854872
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first metal layer over a substrate, forming a dielectric layer over the first metal layer. The method includes forming a trench in the dielectric layer, and performing a surface treatment process on a sidewall surface of the trench to form a hydrophobic layer. The hydrophobic layer is formed on a sidewall surface of the dielectric layer. The method further includes depositing a metal material in the trench and over the hydrophobic layer to form a via structure.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Hao Kung, Chih-Chieh Chang, Kao-Feng Liao, Hui-Chi Huang, Kei-Wei Chen
  • Patent number: 11854827
    Abstract: A chemical-mechanical polishing (CMP) system includes a head, a polishing pad, and a magnetic system. The slurry used in the CMP process contains magnetizable abrasives. Application and control of a magnetic field, by the magnetic system, allows precise control over how the magnetizable abrasives in the slurry may be drawn toward the wafer or toward the polishing pad.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Ting Chen, Chun-Hao Kung, Tung-Kai Chen, Hui-Chi Huang, Kei-Wei Chen
  • Publication number: 20230364734
    Abstract: An embodiment is a polishing pad including a top pad and a sub pad that is below and contacting the top pad. The top pad includes top grooves along a top surface and microchannels extending from the top grooves to a bottom surface of the top pad. The sub pad includes sub grooves along a top surface of the sub pad.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Inventors: Pin-Chuan Su, Jeng-Chi Lin, Guan-Yi Lee, Hui-Chi Huang, Kei-Wei Chen
  • Publication number: 20230321789
    Abstract: A method of operating a chemical mechanical planarization (CMP) tool includes attaching a polishing pad to a first surface of a platen of the CMP tool using a glue; removing the polishing pad from the platen, wherein after removing the polishing pad, residue portions of the glue remain on the first surface of the platen; identifying locations of the residue portions of the glue on the first surface of the platen using a fluorescent material; and removing the residue portions of the glue from the first surface of the platen.
    Type: Application
    Filed: June 14, 2023
    Publication date: October 12, 2023
    Inventors: Tung-Kai Chen, Shang-Yu Wang, Wan-Chun Pan, Zink Wei, Hui-Chi Huang, Kei-Wei Chen
  • Patent number: 11712778
    Abstract: A method of operating a chemical mechanical planarization (CMP) tool includes attaching a polishing pad to a first surface of a platen of the CMP tool using a glue; removing the polishing pad from the platen, wherein after removing the polishing pad, residue portions of the glue remain on the first surface of the platen; identifying locations of the residue portions of the glue on the first surface of the platen using a fluorescent material; and removing the residue portions of the glue from the first surface of the platen.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: August 1, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tung-Kai Chen, Shang-Yu Wang, Wan-Chun Pan, Zink Wei, Hui-Chi Huang, Kei-Wei Chen
  • Publication number: 20230219188
    Abstract: A method of performing a chemical mechanical planarization (CMP) process includes holding a wafer by a retainer ring attached to a carrier, pressing the wafer against a first surface of a polishing pad, the polishing pad rotating at a first speed, dispensing a slurry on the first surface of the polishing pad, and generating vibrations at the polishing pad.
    Type: Application
    Filed: February 24, 2023
    Publication date: July 13, 2023
    Inventors: Chun-Hao Kung, Shang-Yu Wang, Ching-Hsiang Tsai, Hui-Chi Huang, Kei-Wei Chen
  • Patent number: 11664213
    Abstract: A tool and methods of removing films from bevel regions of wafers are disclosed. The bevel film removal tool includes an inner motor nested within an outer motor and a bevel brush secured to the outer motor. The bevel brush is adjustable radially outward to allow the wafer to be inserted in the bevel brush and to be secured to the inner motor. The bevel brush is adjustable radially inward to engage one or more sections of the bevel brush and to bring the bevel brush in contact with a bevel region of the wafer. Once engaged, a solution may be dispensed at the engaged sections of the bevel brush and the inner motor and the outer motor may be rotated such that the bevel brush is rotated against the wafer such that the bevel films of the wafer are both chemically and mechanically removed.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: May 30, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hui-Chi Huang, Jeng-Chi Lin, Pin-Chuan Su, Chien-Ming Wang, Kei-Wei Chen
  • Publication number: 20230118617
    Abstract: Provided herein are polishing pads in which microcapsules that include a polymer material and are dispersed, as well as methods of making and using the same. Such microcapsules are configured to break open (e.g., when the polishing pad is damaged during the dressing process), which releases the polymer material. When contacted with ultraviolet light the polymer material at least partially cures, healing the damage to the polishing pad. Such polishing pads have a longer lifetime and a more stable remove rate when compared to standard polishing pads.
    Type: Application
    Filed: December 15, 2022
    Publication date: April 20, 2023
    Inventors: Chun-Hao Kung, Hui-Chi Huang, Kei-Wei Chen, Yen-Ting Chen
  • Publication number: 20230078573
    Abstract: A planarization method includes: providing a substrate, wherein the substrate includes a first region and a second region having different degrees of hydrophobicity or hydrophilicity, the second region covering an upper surface of the first region; polishing the substrate with a polishing slurry until the upper surface of the first region is exposed; and continuing polishing and performing a surface treatment by the polishing slurry to adjust the degree of hydrophobicity or hydrophilicity of at least one of the first region and the second region. The polishing slurry and the upper surface of the second region have a first contact angle, and the polishing slurry and the upper surface of the first region have a second contact angle. The surface treatment keeps a contact angle difference between the first contact angle and the second contact angle being equal to or less than 30 degrees during the polishing.
    Type: Application
    Filed: June 23, 2022
    Publication date: March 16, 2023
    Inventors: TUNG-KAI CHEN, CHING-HSIANG TSAI, KAO-FENG LIAO, CHIH-CHIEH CHANG, CHUN-HAO KUNG, FANG-I CHIH, HSIN-YING HO, CHIA-JUNG HSU, HUI-CHI HUANG, KEI-WEI CHEN
  • Patent number: 11590627
    Abstract: A method of performing a chemical mechanical planarization (CMP) process includes holding a wafer by a retainer ring attached to a carrier, pressing the wafer against a first surface of a polishing pad, the polishing pad rotating at a first speed, dispensing a slurry on the first surface of the polishing pad, and generating vibrations at the polishing pad.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: February 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Hao Kung, Shang-Yu Wang, Ching-Hsiang Tsai, Hui-Chi Huang, Kei-Wei Chen
  • Patent number: 11551936
    Abstract: Provided herein are polishing pads in which microcapsules that include a polymer material and are dispersed, as well as methods of making and using the same. Such microcapsules are configured to break open (e.g., when the polishing pad is damaged during the dressing process), which releases the polymer material. When contacted with ultraviolet light the polymer material at least partially cures, healing the damage to the polishing pad. Such polishing pads have a longer lifetime and a more stable remove rate when compared to standard polishing pads.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: January 10, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Hao Kung, Hui-Chi Huang, Kei-Wei Chen, Yen-Ting Chen
  • Publication number: 20220367257
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first metal layer over a substrate, forming a dielectric layer over the first metal layer. The method includes forming a trench in the dielectric layer, and performing a surface treatment process on a sidewall surface of the trench to form a hydrophobic layer. The hydrophobic layer is formed on a sidewall surface of the dielectric layer. The method further includes depositing a metal material in the trench and over the hydrophobic layer to form a via structure.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 17, 2022
    Inventors: Chun-Hao Kung, Chih-Chieh Chang, Kao-Feng Liao, Hui-Chi Huang, Kei-Wei Chen
  • Publication number: 20220362907
    Abstract: Provided herein are chemical-mechanical planarization (CMP) systems and methods to reduce metal particle pollution on dressing disks and polishing pads. Such methods may include contacting a dressing disk and at least one conductive element with an electrolyte solution and applying direct current (DC) power to the dressing disk and the at least one conductive element.
    Type: Application
    Filed: July 29, 2022
    Publication date: November 17, 2022
    Inventors: Chih-Chieh CHANG, Yen-Ting CHEN, Hui-Chi HUANG, Kei-Wei CHEN
  • Publication number: 20220359191
    Abstract: A tool and methods of removing films from bevel regions of wafers are disclosed. The bevel film removal tool includes an inner motor nested within an outer motor and a bevel brush secured to the outer motor. The bevel brush is adjustable radially outward to allow the wafer to be inserted in the bevel brush and to be secured to the inner motor. The bevel brush is adjustable radially inward to engage one or more sections of the bevel brush and to bring the bevel brush in contact with a bevel region of the wafer. Once engaged, a solution may be dispensed at the engaged sections of the bevel brush and the inner motor and the outer motor may be rotated such that the bevel brush is rotated against the wafer such that the bevel films of the wafer are both chemically and mechanically removed.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Inventors: Hui-Chi Huang, Jeng-Chi Lin, Pin-Chuan Su, Chien-Ming Wang, Kei-Wei Chen
  • Patent number: 11446785
    Abstract: Provided herein are chemical-mechanical planarization (CMP) systems and methods to reduce metal particle pollution on dressing disks and polishing pads. Such methods may include contacting a dressing disk and at least one conductive element with an electrolyte solution and applying direct current (DC) power to the dressing disk and the at least one conductive element.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: September 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Chieh Chang, Yen-Ting Chen, Hui-Chi Huang, Kei-Wei Chen