Patents by Inventor Hui He

Hui He has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10873088
    Abstract: Provided is a lithium-selenium battery, comprising a cathode, an anode, and a porous separator/electrolyte assembly, wherein the anode comprises an anode active layer containing lithium or lithium alloy as an anode active material, and the cathode comprises a cathode active layer comprising a selenium-containing material, wherein an anode-protecting layer is disposed between the anode active layer and the separator/electrolyte and/or a cathode-protecting layer is disposed between the cathode active layer and the separator/electrolyte; the protecting layer comprising from 0.01% to 40% by weight of a conductive reinforcement material and from 0.01% to 40% by weight of an electrochemically stable inorganic filler dispersed in a sulfonated elastomeric matrix material and having a thickness from 1 nm to 100 ?m, a fully recoverable tensile strain from 2% to 500%, a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm, and an electrical conductivity from 10?7 S/cm to 100 S/cm.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: December 22, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Hui He, Aruna Zhamu, Bor Z. Jang
  • Patent number: 10873083
    Abstract: Provided is an anode particulate, having a dimension from 10 nm to 300 ?m, for use in an alkali metal battery, the particulate comprising (i) an anode active material capable of reversibly absorbing/desorbing lithium or sodium ions, (ii) an electron-conducting material, and (iii) a lithium or sodium salt with an optional polymer or its monomer, but without a liquid solvent, for an electrolyte, wherein the electron-conducting material forms a 3D network of electron-conducting pathways in electronic contact with the anode active material and the lithium or sodium salt is in physical contact with the anode active material (so that the salt, when later impregnated with a liquid solvent, becomes an electrolyte forming a 3D network of lithium or sodium ion-conducting channels in ionic contact with the anode active material). The particulate can be of any shape, but preferably spherical or ellipsoidal in shape. Also provided is a cathode particulate.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: December 22, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Hui He, Baofei Pan, Bor Z. Jang
  • Patent number: 10868304
    Abstract: An electrochemical battery cell comprising an anode having a primary anode active material, a cathode, and an ion-conducting electrolyte, wherein the cell has an initial output voltage, Vi, measured at 10% depth of discharge (DoD), selected from a range from 0.3 volts to 0.8 volts, and a final output voltage Vf measured at a DoD no greater than 90%, wherein a voltage variation, (Vi?Vf)/Vi, is no greater than ±10% and the specific capacity between Vi and Vf is no less than 100 mAh/g or 200 mAh/cm3 based on the cathode active material weight or volume, and wherein the primary anode active material is selected from lithium (Li), sodium (Na), potassium (K), magnesium (Mg), aluminum (Al), zinc (Zn), titanium (Ti), manganese (Mn), iron (Fe), vanadium (V), cobalt (Co), nickel (Ni), a mixture thereof, an alloy thereof, or a combination thereof.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: December 15, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Yu-Sheng Su, Minjie Li, Hui He, Qing Fang, Aruna Zhamu, Bor Z. Jang
  • Patent number: 10862129
    Abstract: Provided is lithium secondary battery comprising a cathode, an anode, and an electrolyte or separator-electrolyte assembly disposed between the cathode and the anode, wherein the anode comprises: (a) a foil or coating of lithium or lithium alloy; and (b) a thin layer of a high-elasticity polymer disposed between the foil/coating and the electrolyte (or separator-electrolyte assembly), having a recoverable tensile strain no less than 2%, a lithium ion conductivity no less than 10?6 S/cm at room temperature, and a thickness from 1 nm to 10 ?m, wherein the high-elasticity polymer contains a cross-linked network of polymer chains having an ether linkage, nitrile-derived linkage, benzo peroxide-derived linkage, ethylene oxide linkage, propylene oxide linkage, vinyl alcohol linkage, cyano-resin linkage, triacrylate monomer-derived linkage, tetraacrylate monomer-derived linkage, or a combination thereof in the cross-linked network of polymer chains.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: December 8, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Baofei Pan, Hui He, Aruna Zhamu, Bor Z. Jang
  • Patent number: 10863628
    Abstract: A printed circuit board (PCB) may include a plurality of horizontally disposed signal layers. The PCB may include a first vertically disposed differential via electrically connected to a first horizontally disposed signal layer, of the plurality of horizontally disposed signal layers, and a second horizontally disposed signal layer of the plurality of horizontally disposed signal layers. The PCB may include a second vertically disposed differential via electrically connected to the first signal horizontally disposed layer and the second horizontally disposed signal layer. The PCB may include a first set of clearances encompassing the first vertically disposed differential via and the second vertically disposed differential via, a second set of clearances encompassing the first vertically disposed stub, and a third set of clearances encompassing the second vertically disposed stub.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: December 8, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: Matthew Twarog, Hui He, Thomas W. Jetton
  • Patent number: 10840502
    Abstract: Provided is an anode active material layer for a lithium battery. The anode active material layer comprises multiple anode active material particles and an optional conductive additive that are bonded together by a binder comprising a high-elasticity polymer having a recoverable or elastic tensile strain no less than 10% when measured without an additive or reinforcement in the polymer and a lithium ion conductivity no less than 10?5 S/cm at room temperature. The anode active material preferably has a specific lithium storage capacity greater than 372 mAh/g (e.g. Si, Ge, Sn, SnO2, Co3O4, etc.).
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: November 17, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Baofei Pan, Hui He, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20200342803
    Abstract: In example implementations, a display is provided. The display includes a cover lens, a phosphorescent component, a display module and a processor. The phosphorescent component is located adjacent to the cover lens. The display module is located adjacent to the phosphorescent component opposite the cover lens. The processor is communicatively coupled to the display module to cause the display module to generate a desired image that activates corresponding portions of the phosphorescent component before the display is powered down.
    Type: Application
    Filed: December 14, 2017
    Publication date: October 29, 2020
    Inventors: HUI HE, HANG YAN YUEN, PAUL HOWARD MAZURKIEWICZ
  • Patent number: 10818926
    Abstract: A method of producing a powder mass for a lithium battery, comprising: (a) mixing an inorganic filler and an elastomer or its precursor in a liquid medium or solvent to form a suspension; (b) dispersing a plurality of particles of an anode active material in the suspension to form a slurry; and (c) dispensing the slurry and removing the solvent and/or polymerizing or curing the precursor to form the powder mass, wherein at least a particulate is composed of one or a plurality of anode particles being encapsulated by a layer of inorganic filler-reinforced elastomer having a thickness from 1 nm to 10 ?m, a fully recoverable tensile strain from 2% to 500%, and a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm and the inorganic filler has a lithium intercalation potential from 1.1 V to 4.5 V versus Li/Li+.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: October 27, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Baofei Pan, Hui He, Aruna Zhamu, Bor Z. Jang
  • Patent number: 10797313
    Abstract: Provided is method of producing anode or cathode particulates for an alkali metal battery. The method comprises: (a) preparing a slurry containing particles of an anode or cathode active material, an electron-conducting material, and an electrolyte containing a lithium salt or sodium salt and an optional polymer dissolved in a liquid solvent; and (b) conducting a particulate-forming means to convert the slurry into multiple anode or cathode particulates, wherein an anode or a cathode particulate is composed of (i) particles of the active material, (ii) the electron-conducting material, and (iii) an electrolyte, wherein the electron-conducting material forms a 3D network of electron-conducting pathways and the electrolyte forms a 3D network of lithium ion- or sodium ion-conducting channels and wherein the anode particulate or cathode particulate has a dimension from 10 nm to 100 ?m and an electrical conductivity from about 10?6 S/cm to about 300 S/cm.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: October 6, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Hui He, Baofei Pan, Bor Z. Jang
  • Publication number: 20200315058
    Abstract: This application provides a display card including a circuit board, a fan, and a cover body. The fan is disposed on the circuit board. The cover body covers the circuit board and includes a top wall. The top wall includes a first covering portion and a second covering portion. The first covering portion includes an opening to expose the fan. The second covering portion is connected to the first covering portion, and bends towards the circuit board.
    Type: Application
    Filed: March 11, 2020
    Publication date: October 1, 2020
    Inventor: Hui HE
  • Publication number: 20200305100
    Abstract: Disclosed in the present invention is a signal transmission method for a multi-antenna multi-user TDD communication system. Each frame of the TDD communication system includes one forward downlink frame synchronization signal, multiple downlink data time slots, and multiple uplink data time slots; the downlink frame synchronization signal is a broadcast signal, the base station sends the downlink frame synchronization signal to all terminals, and after each terminal receives the downlink frame synchronization signal, time and frequency synchronization is performed with reference to the base station to acquire the start time and end time of each uplink data time slot. The synchronization signal received power P is evaluated and compared with the synchronization signal received power range of all uplink data time slots in the frame, and all terminals falling into the synchronization signal received power range of the uplink data time slot k select the uplink data time slot k to send data.
    Type: Application
    Filed: October 10, 2018
    Publication date: September 24, 2020
    Inventors: Daiming QU, Hao JIANG, Zhibing WANG, Hui HE, Jingshun LIU
  • Patent number: 10784509
    Abstract: Provided is a lithium secondary battery, comprising a cathode, an anode, and a porous separator or electrolyte, wherein the anode comprises: (a) an anode active layer containing a layer of lithium or lithium alloy, in a form of a foil, coating, or multiple particles aggregated together, as an anode active material; (b) a first anode-protecting layer having a thickness from 1 nm to 100 ?m, a specific surface area greater than 50 m2/g and comprising a thin layer of electron-conducting material selected from graphene sheets, carbon nanotubes, carbon nanofibers, carbon or graphite fibers, expanded graphite flakes, metal nanowires, conductive polymer fibers, or a combination thereof, and (c) a second anode-protecting layer having a thickness from 1 nm to 100 ?m and comprising an elastomer having a fully recoverable tensile elastic strain from 2% to 1,000% and a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: September 22, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Hui He, Baofei Pan, Aruna Zhamu, Bor Z. Jang
  • Patent number: 10777810
    Abstract: Provided is a lithium secondary battery, comprising a cathode, an anode, and a porous separator or electrolyte, wherein the anode comprises: (a) an anode active layer containing a layer of lithium or lithium alloy, in a form of a foil, coating, or multiple particles aggregated together, as an anode active material; (b) a first anode-protecting layer having a thickness from 1 nm to 100 ?m (preferably <1 ?m and more preferably <100 nm) and comprising a lithium ion-conducting material having a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm; and (c) a second anode-protecting layer having a thickness from 1 nm to 100 ?m and comprising an elastomer having a fully recoverable tensile elastic strain from 2% to 1,000% and a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: September 15, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Hui He, Baofei Pan, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20200280793
    Abstract: The present disclosure is drawn to an earpiece. The earpiece can include a speaker suitable for use within or adjacent to an ear canal of a user and a layered composite associated with the speaker. The layered composite can include an expanded polytetrafluoroethylene (PTFE) layer, a self-supporting substrate applied to a first side of the expanded PTFE layer, and a fabric substrate applied to a second side of the expanded PTFE layer. The expanded polytetrafluoroethylene layer can have a pore size having an average value from 0.1 micron to 0.5 micron. The self-supporting substrate can define a contour of the earpiece.
    Type: Application
    Filed: November 16, 2017
    Publication date: September 3, 2020
    Applicant: Hewlett-Packard Development Company, L. P.
    Inventors: Hui He, Hang Yan Yuen
  • Publication number: 20200249402
    Abstract: In an example, a port cleaner may include a body having a fluid aperture extending into the body. The fluid aperture may extend into a surface of the body. The port cleaner may also include a fluid channel disposed, at least partially, within the body and may be in fluid communication with the fluid aperture. The port cleaner may further include a wiper or contact wiper engaged with the fluid channel and movable between a lowered position and a raised position. The contact wiper may extend from a surface of the body when disposed in the raised position.
    Type: Application
    Filed: September 29, 2017
    Publication date: August 6, 2020
    Inventors: KATIA BENSON, HUI HE, RYAN P MOORE
  • Patent number: 10734646
    Abstract: Provided is a lithium secondary battery, comprising a cathode, an anode, and a porous separator or electrolyte, wherein the anode comprises: (a) an anode active layer containing a layer of lithium or lithium alloy, in a form of a foil, coating, or multiple particles aggregated together, as an anode active material; and (b) an anode-protecting layer of a conductive sulfonated elastomer composite, disposed between the anode active layer and the separator/electrolyte; wherein the composite has from 0.01% to 40% by weight of a conductive reinforcement material and from 0.01% to 40% by weight of an inorganic filler dispersed in a sulfonated elastomeric matrix material and the protecting layer has a thickness from 1 nm to 100 ?m, a fully recoverable tensile strain from 2% to 500%, a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm, and an electrical conductivity from 10?7 S/cm to 100 S/cm.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: August 4, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Hui He, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20200241284
    Abstract: In one example, a display is described, which may include a plurality of spaced light emitting device packages, a privacy gate having partition walls to partition each of the plurality of spaced light emitting device packages, and a control unit to selectively move the partition walls up or down relative to the plurality of spaced light emitting device packages to control a viewing angle of the display.
    Type: Application
    Filed: October 13, 2017
    Publication date: July 30, 2020
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Kuan-Ting Wu, Wei-Chung Chen, Hui He
  • Publication number: 20200223114
    Abstract: One example includes an injection-molded component comprising a surface surrounded by peripheral edges and which is formed via an injection-molding process. The surface includes a three-dimensional surface feature to render the surface as being non-planar across at least a portion of the surface. The surface also includes a plurality of holographic micro-features formed across the surface and being to interact with ambient light to provide a holographic image corresponding to an authentication mark associated with the injection-molded component.
    Type: Application
    Filed: January 30, 2017
    Publication date: July 16, 2020
    Inventors: Adolfo Gomez, William E. Gallahan, Jack Hui He
  • Patent number: 10714738
    Abstract: A method of producing a pre-selenized (selenium-preloaded) active cathode layer for a rechargeable alkali metal-selenium cell; the method comprising: (a) preparing an integral layer of mesoporous structure having pore sizes from 0.5 nm to 50 nm (preferably from 0.5 nm to 5 nm) and a specific surface area from 100 to 3,200 m2/g; (b) preparing an electrolyte comprising a solvent and a selenium source; (c) preparing an anode; and (d) bringing the integral layer and the anode in ionic contact with the electrolyte and imposing an electric current between the anode and the integral layer (serving as a cathode) to electrochemically deposit nanoscaled selenium particles or coating on the graphene surfaces. The selenium particles or coating have a thickness or diameter smaller than 20 nm (preferably <10 nm, more preferably <5 nm or even <3 nm) and preferably occupy a weight fraction of at least 70% (preferably >90% or even >95%).
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: July 14, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Hui He, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20200197912
    Abstract: The invention discloses a catalyst for removing volatile organic compounds and a preparation method therefor. In the catalyst, aluminum oxide modified by iron, cobalt and nickel is used as a carrier, cordierite honeycomb ceramic is used as a matrix, and an extremely low content of a mixture of platinum and palladium is used as an active component; a molar ratio of platinum to palladium is 0-1:0-9, and an amount of the mixture of platinum and palladium accounts for 0.01% to 0.05% of a mass of the matrix; and an amount of the carrier accounts for 3% to 5% of the mass of the matrix.
    Type: Application
    Filed: November 27, 2017
    Publication date: June 25, 2020
    Applicant: SOUTH CHINA UNIVERSITY OF TECHNOLOGY
    Inventors: Mingli FU, Qi GAN, Hui HE, Junliang WU, Daiqi YE