Patents by Inventor Hui He

Hui He has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10686217
    Abstract: A rechargeable lithium-sulfur cell comprising a cathode, an anode, a separator electronically separating the two electrodes, a first electrolyte in contact with the cathode, and a second electrolyte in contact with the anode, wherein the first electrolyte contains a first concentration, C1, of a first lithium salt dissolved in a first solvent when the first electrolyte is brought in contact with the cathode, and the second electrolyte contains a second concentration, C2, of a second lithium salt dissolved in a second solvent when the second electrolyte is brought in contact with the anode, wherein C1 is less than C2. The cell exhibits an exceptionally high specific energy and a long cycle life.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: June 16, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Hui He, Bor Z. Jang, Yanbo Wang, Aruna Zhamu, Wei Xiong
  • Patent number: 10679587
    Abstract: In some examples, a computing device is to detect a fiducial mark on a portable device that comprises a display screen, generate supplemental information that corresponds to information presented in the display screen of the portable device, and cause display of the supplemental information by a display device of the computing device, according to an orientation that is based on the detected fiducial mark, the displayed supplemental information supplementing the information presented in the display screen of the portable device.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: June 9, 2020
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Hang Yan Yuen, Paul Howard Mazurkiewicz, Hui He
  • Patent number: 10639870
    Abstract: Provided in one example is a composite. The composite includes: a porous core layer including a fluoropolymer; a first layer disposed over at least a portion of the core layer; and a second layer disposed over at least a portion of the first layer. The first layer includes fibers that compose at least one of unidirectional fibers and woven fibers. The second layer includes a polymer. The composite is permeable to air but impermeable to liquid wafer.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: May 5, 2020
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Hang Yan Yuen, Hui He
  • Patent number: 10637067
    Abstract: Provided is a process for producing a rope-shape alkali metal-sulfur battery, comprising (a) providing a first electrode comprising a conductive porous rod and a mixture of a first electrode active material and a first electrolyte residing in pores of the first porous rod; (b) providing a porous separator wrapping around the first electrode to form a separator-protected first electrode; (c) providing a second electrode comprising a conductive porous rod having a mixture of a second electrode active material and a second electrolyte residing in pores of the second porous rod; (d) combining the separator-protected first electrode and the second electrode to form a braid or a yarn; and (d) encasing the braid or yarn with a protective sheath; wherein one of the electrodes is a cathode containing sulfur or a sulfur compound as a cathode active material and the battery has a length-to-diameter aspect ratio no less than 5.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: April 28, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Hui He, Baofei Pan, Yu-Sheng Su, Bor Z Jang
  • Patent number: 10637043
    Abstract: Provided is an anode particulate, having a dimension from 10 nm to 100 ?m, for use in an alkali metal battery, the particulate comprising (i) an anode active material capable of reversibly absorbing and desorbing lithium ions or sodium ions, (ii) an electron-conducting material, and (iii) a lithium ion-conducting or sodium ion-conducting electrolyte, wherein the electron-conducting material forms a three dimensional network of electron-conducting pathways in electronic contact with the anode active material and the electrolyte forms a three dimensional network of lithium ion- or sodium ion-conducting channels in ionic contact with the anode active material. The particulate can be of any shape, but preferably spherical or ellipsoidal in shape.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 28, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Hui He, Baofei Pan, Bor Z. Jang
  • Patent number: 10629955
    Abstract: A method of producing a pre-selenized (selenium-preloaded) active cathode layer for a rechargeable alkali metal-selenium cell; the method comprising: (a) Preparing an integral layer of porous graphitic structure having a specific surface area greater than 100 m2/g; (b) Preparing an electrolyte comprising a solvent and a selenium source; (c) Preparing an anode; and (d) Bringing the integral layer and the anode in ionic contact with the electrolyte and imposing an electric current between the anode and the integral layer (serving as a cathode) to electrochemically deposit nanoscaled selenium particles or coating on the graphene surfaces. The selenium particles or coating have a thickness or diameter smaller than 20 nm (preferably <10 nm, more preferably <5 nm or even <3 nm) and occupy a weight fraction of at least 70% (preferably >90% or even >95%).
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: April 21, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Hui He, Aruna Zhamu, Bor Z. Jang
  • Patent number: 10629948
    Abstract: Provided is an aluminum secondary battery comprising an anode, a cathode, a porous separator electronically separating the anode and the cathode, and an electrolyte in ionic contact with the anode and the cathode to support reversible deposition and dissolution of aluminum at the anode, wherein the anode contains aluminum metal or an aluminum metal alloy as an anode active material and the cathode comprises a layer of recompressed exfoliated graphite or carbon material that is oriented in such a manner that the layer has a graphite edge plane in direct contact with the electrolyte and facing the separator. Typically, this graphite edge plane is substantially parallel to the separator layer plane. Such an aluminum battery delivers a high energy density, high power density, and long cycle life.
    Type: Grant
    Filed: March 5, 2017
    Date of Patent: April 21, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Yu-Sheng Su, Aruna Zhamu, Hui He, Baofei Pan, Bor Z. Jang
  • Patent number: 10585454
    Abstract: In some examples, a wearable system includes an outer case defining an inner chamber and comprising a portion including a liquid resistant and breathable layer. The wearable system further includes a computing device in the inner chamber, and an airflow generator to produce an airflow to cool the computing device and to direct a resulting heated airflow to flow through pores of the liquid resistant and breathable layer to an environment outside the outer case.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: March 10, 2020
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Hang Yan Yuen, Paul Howard Mazurkiewicz, Hui He
  • Publication number: 20200067101
    Abstract: A method of producing a powder mass for a lithium battery, the method comprising: (a) providing a solution containing a sulfonated elastomer dissolved in a solvent or a precursor in a liquid form or dissolved in a solvent; (b) dispersing a plurality of particles of a cathode active material in the solution to form a slurry; and (c) dispensing the slurry and removing the solvent and/or polymerizing/curing the precursor to form the powder mass, wherein the powder mass comprises multiple particulates and at least a particulate comprises one or a plurality of particles of a cathode active material being encapsulated by a thin layer of sulfonated elastomer having a thickness from 1 nm to 10 ?m, a fully recoverable tensile strain from 2% to 800%, and a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm at room temperature.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 27, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Baofei Pan, Hui He, Bor Z. Jang
  • Publication number: 20200067080
    Abstract: Provided is a lithium battery cathode electrode comprising multiple particulates of a cathode active material, wherein at least a particulate comprises one or a plurality of particles of a cathode active material being encapsulated by a thin layer of a sulfonated elastomer, wherein the encapsulating thin layer of sulfonated elastomer has a thickness from 1 nm to 10 ?m, a fully recoverable tensile strain from 2% to 800%, and a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm. The encapsulating layer may further contain an electron-conducting additive and/or a lithium ion-conducting additive dispersed in the sulfonated elastomer.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 27, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Baofei Pan, Hui He, Bor Z. Jang
  • Publication number: 20200067079
    Abstract: A method of producing a powder mass for a lithium battery, comprising: (a) mixing an inorganic filler and an elastomer or its precursor in a liquid medium or solvent to form a suspension; (b) dispersing a plurality of particles of a cathode active material in the suspension to form a slurry; and (c) dispensing the slurry and removing the solvent and/or polymerizing or curing the precursor to form the powder mass, wherein at least a particulate comprises one or a plurality of cathode active material particles being encapsulated by a layer of inorganic filler-reinforced elastomer having a thickness from 1 nm to 10 ?m, a fully recoverable tensile strain from 2% to 500%, and a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm and the inorganic filler has a lithium intercalation potential from 1.1 V to 4.5 V versus Li/Li+.
    Type: Application
    Filed: August 22, 2018
    Publication date: February 27, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Baofei Pan, Hui He, Bor Z. Jang
  • Publication number: 20200067077
    Abstract: Provided is a lithium battery cathode electrode comprising multiple particulates of a cathode active material, wherein at least a particulate is composed of one or a plurality of particles of a cathode active material being encapsulated by a thin layer of inorganic filler-reinforced elastomer having from 0.01% to 50% by weight of an inorganic filler dispersed in an elastomeric matrix material based on the total weight of the inorganic filler-reinforced elastomer, wherein the encapsulating thin layer of inorganic filler-reinforced elastomer has a thickness from 1 nm to 10 ?m, a fully recoverable tensile strain from 2% to 500%, and a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm and the inorganic filler has a lithium intercalation potential from 1.1 V to 4.5 V (preferably 1.2-2.5 V) versus Li/Li+.
    Type: Application
    Filed: August 22, 2018
    Publication date: February 27, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Baofei Pan, Hui He, Bor Z. Jang
  • Publication number: 20200053880
    Abstract: A printed circuit board (PCB) may include a plurality of horizontally disposed signal layers. The PCB may include a first vertically disposed differential via electrically connected to a first horizontally disposed signal layer, of the plurality of horizontally disposed signal layers, and a second horizontally disposed signal layer of the plurality of horizontally disposed signal layers. The PCB may include a second vertically disposed differential via electrically connected to the first signal horizontally disposed layer and the second horizontally disposed signal layer. The PCB may include a first set of clearances encompassing the first vertically disposed differential via and the second vertically disposed differential via, a second set of clearances encompassing the first vertically disposed stub, and a third set of clearances encompassing the second vertically disposed stub.
    Type: Application
    Filed: October 17, 2019
    Publication date: February 13, 2020
    Inventors: Matthew TWAROG, Hui HE, Thomas W. JETTON
  • Publication number: 20200052290
    Abstract: A method of producing a pre-sulfurized active cathode layer for a rechargeable alkali metal-sulfur cell; the method comprising: (a) preparing an integral layer of mesoporous structure of a carbon, graphite, metal, or conductive polymer having a specific surface area greater than 100 m2/g; (b) preparing an electrolyte comprising a solvent and a sulfur source; (c) preparing an anode; and (d) bringing the integral layer and the anode in ionic contact with the electrolyte and imposing an electric current between the anode and the integral layer (serving as a cathode) to electrochemically deposit nanoscaled sulfur particles or coating on the graphene surfaces. The sulfur particles or coating have a thickness or diameter smaller than 20 nm (preferably <10 nm, more preferably <5 nm or even <3 nm) and occupy a weight fraction of at least 70% (preferably >90% or even >95%).
    Type: Application
    Filed: October 8, 2019
    Publication date: February 13, 2020
    Applicant: Global Graphene Group, Inc.
    Inventors: Hui He, Aruna Zhamu, Bor Z. Jang
  • Patent number: 10553873
    Abstract: Provided is aluminum secondary battery comprising an anode, a cathode, a porous separator electronically separating the anode and the cathode, and an electrolyte in ionic contact with the anode and the cathode to support reversible deposition and dissolution of aluminum at the anode, wherein the anode contains aluminum metal or an aluminum metal alloy as an anode active material and the cathode comprises a layer of graphitic carbon particles or fibers, preferably selected from meso-phase carbon particles, meso carbon micro-beads (MCMB), coke particles or needles, soft carbon particles, hard carbon particles, amorphous graphite containing graphite micro-crystallites, multi-walled carbon nanotubes, carbon nano-fibers, carbon fibers, graphite nano-fibers, graphite fibers, or a combination thereof.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: February 4, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Yu-Sheng Su, Aruna Zhamu, Hui He, Baofei Pan, Bor Z. Jang
  • Publication number: 20200028178
    Abstract: Provided is a rechargeable alkali metal-sulfur cell comprising an anode layer, an electrolyte and a porous separator, a cathode layer, and a discrete anode-protecting layer disposed between the anode layer and the separator and/or a discrete cathode-protecting layer disposed between the separator and the cathode active material layer; wherein the anode-protecting layer or cathode-protecting layer comprises a conductive sulfonated elastomer composite having from 0.01% to 40% by weight of a conductive reinforcement material and from 0.01% to 40% by weight of an electrochemically stable inorganic filler dispersed in a sulfonated elastomeric matrix material and the protective layer has a thickness from 1 nm to 50 ?m, a fully recoverable tensile strain from 2% to 500%, a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm, and an electrical conductivity from 10?7 S/cm to 100 S/cm.
    Type: Application
    Filed: August 29, 2018
    Publication date: January 23, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Hui He, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20200028179
    Abstract: The invention provides a method of improving the cycle-life of a rechargeable alkali metal-sulfur cell. The method comprises implementing an anode-protecting layer between an anode active material layer and a porous separator/electrolyte, and/or implementing a cathode-protecting layer between a cathode active material and the porous separator/electrolyte, wherein the anode-protecting layer or cathode-protecting layer comprises a conductive sulfonated elastomer composite having from 0.01% to 40% by weight of a conductive reinforcement material and from 0.01% to 40% by weight of an electrochemically stable inorganic filler dispersed in a sulfonated elastomeric matrix material and the protecting layer has a thickness from 1 nm to 100 ?m, a fully recoverable tensile strain from 2% to 500%, a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm, and an electrical conductivity from 10?7 S/cm to 100 S/cm when measured at room temperature.
    Type: Application
    Filed: August 29, 2018
    Publication date: January 23, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Hui He, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20200021652
    Abstract: Disclosed in the embodiments of the present invention are a data synchronization method, apparatus, storage medium and electronic device. The data synchronization method comprises: determining a data type corresponding to target data to be synchronized; determining whether the data type corresponding to the target data is a preset data type; if not, adding the target data to a data buffer area; and synchronizing the target data in the data buffer area to a cloud server after a preset period of time.
    Type: Application
    Filed: September 20, 2019
    Publication date: January 16, 2020
    Inventor: Hui HE
  • Patent number: 10535880
    Abstract: Provided is a rope-shaped alkali metal battery comprising: (a) a first electrode comprising a first conductive porous rod having pores and a first mixture of a first electrode active material and a first electrolyte residing in the pores of the first porous rod; (b) a porous separator wrapping around or encasing the first electrode to form a separator-protected first electrode; (c) a second electrode comprising a second conductive porous rod having pores and a second mixture of a second electrode active material and a second electrolyte residing in the pores of the second porous rod; wherein the separator-protected first electrode and second electrode are combined to form a braid or a yarn having a twist or spiral electrode; and (d) a protective casing or sheath wrapping around or encasing the braid or yarn.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: January 14, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Hui He, Baofei Pan, Yu-Sheng Su, Bor Z Jang
  • Publication number: 20190393482
    Abstract: The invention provides a method of improving the anode stability and cycle-life of a lithium metal secondary battery. The method comprises implementing two anode-protecting layers between an anode active material layer and an electrolyte or electrolyte/separator assembly. These two layers comprise (a) a first anode-protecting layer having a thickness from 1 nm to 100 ?m (preferably <1 ?m and more preferably <100 nm) and comprising a lithium ion-conducting material having a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm; and (b) a second anode-protecting layer having a thickness from 1 nm to 100 ?m and comprising an elastomer having a fully recoverable tensile elastic strain from 2% to 1,000% (preferably >10% more preferably >100%) and a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm.
    Type: Application
    Filed: September 6, 2018
    Publication date: December 26, 2019
    Applicant: Nanotek Instruments, Inc.
    Inventors: Hui He, Baofei Pan, Aruna Zhamu, Bor Z. Jang