Patents by Inventor Huicai Zhong

Huicai Zhong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8513742
    Abstract: The present invention relates to a method for manufacturing a contact and a semiconductor device having said contact. The present invention proposes to form first a trench contract of relatively large size, then to form one or more dielectric layer(s) within the trench contact, and then to remove the upper part of the dielectric layer(s) and to fill the same with a conductive material. The use of such a method makes it easy to form a trench contact of relatively large size which is easy for manufacturing; besides, since dielectric layer(s) is/are formed in the trench contact, thence capacitance between a source/drain trench contact and a gate electrode is reduced accordingly.
    Type: Grant
    Filed: February 27, 2011
    Date of Patent: August 20, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Science
    Inventors: Huicai Zhong, Qingqing Liang
  • Patent number: 8513780
    Abstract: The present invention discloses an inter-level dielectric layer for a semiconductor device, a method for manufacturing the same and a semiconductor device having said inter-level dielectric layer. The method lies in forming non-interconnected holes within a dielectric layer, and these holes may be filled with porous low-k dielectric material with a much lower dielectric constant, or forming holes within the dielectric layer by filling the upper parts of the holes. The inter-level dielectric layer in such a structure has a much lower dielectric constant, reduces RC delay between devices of integrated circuits and also is easy to integrate; besides, since the holes within the dielectric layer are non-interconnected, they shall not cause change to the dielectric constant of the dielectric material or a short circuit between wires, thus the device shall have better stability and reliability which then improve performance of the circuit.
    Type: Grant
    Filed: February 26, 2011
    Date of Patent: August 20, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang
  • Publication number: 20130200456
    Abstract: The present invention relates to a semiconductor substrate, an integrated circuit having the semiconductor substrate, and methods of manufacturing the same.
    Type: Application
    Filed: November 29, 2011
    Publication date: August 8, 2013
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin, Huicai Zhong
  • Patent number: 8492210
    Abstract: The invention relates to a transistor, a semiconductor device comprising the transistor and manufacturing methods for the transistor and the semiconductor device. The transistor according to the invention comprises: a substrate comprising at least a base layer, a first semiconductor layer, an insulating layer and a second semiconductor layer stacked sequentially; a gate stack formed on the second semiconductor layer; a source region and a drain region located on both sides of the gate stack respectively; a back gate comprising a back gate dielectric and a back gate electrode formed by the insulating layer and the first semiconductor layer, respectively; and a back gate contact formed on a portion of the back gate electrode. The back gate contact comprises an epitaxial part raised from the surface of the back gate electrode, and each of the source region and the drain region comprises an epitaxial part raised from the surface of the second semiconductor layer.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: July 23, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Qingqing Liang, Huilong Zhu, Huicai Zhong
  • Patent number: 8492206
    Abstract: A semiconductor device structure and a method for manufacturing the same are disclosed. In one embodiment, the method comprises: forming a fin in a first direction on a semiconductor substrate; forming a gate line in a second direction crossing the first direction on the semiconductor substrate, the gate line intersecting the fin via a gate dielectric layer; forming a dielectric spacer surrounding the gate line; forming a conductive spacer surrounding the dielectric spacer; and performing inter-device electrical isolation at a predetermined region, wherein isolated portions of the gate line form gate electrodes of respective unit devices, and isolated portions of the conductive spacer form contacts of the respective unit devices.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: July 23, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Jun Luo, Qingqing Liang, Huilong Zhu
  • Patent number: 8481379
    Abstract: An embodiment of the present invention discloses a method for manufacturing a FinFET, when a fin is formed, a dummy gate across the fin is formed on the fin, a source/drain opening is formed in both the cover layer and the first dielectric layer at both sides of the dummy gate, the source/drain opening is at both sides of the fin covered by the dummy gate and is an opening region surrounded by the cover layer and the first dielectric layer around it. In the formation of a source/drain region in the source/drain opening, stress is generated due to lattice mismatching, and applied to the channel due to the limitation by the source/drain opening in the first dielectric layer, thereby increasing the carrier mobility of the device, and improving the performance of the device.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: July 9, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Qingqing Liang, Huilong Zhu, Huicai Zhong
  • Publication number: 20130153913
    Abstract: A transistor, a method for fabricating a transistor, and a semiconductor device comprising the transistor are disclosed in the present invention. The method for fabricating a transistor may comprise: providing a substrate and forming a first insulating layer on the substrate; defining a first device area on the first insulating layer; forming a spacer surrounding the first device area on the first insulating layer; defining a second device area on the first insulating layer, wherein the second device area is isolated from the first device area by the spacer; and forming transistor structures in the first and second device area, respectively. The method for fabricating a transistor of the present invention greatly reduces the space required for isolation, significantly decreases the process complexity, and greatly reduces fabricating cost.
    Type: Application
    Filed: November 30, 2011
    Publication date: June 20, 2013
    Inventors: Qingqing Liang, Huicai Zhong, Huilong Zhu
  • Patent number: 8460988
    Abstract: A method of manufacturing a semiconductor device is provided, in which after forming a gate stack and a first spacer thereof, a second spacer and a third spacer are formed; and then an opening is formed between the first spacer and the third spacer by removing the second spacer. The range of the formation for the raised active area 220 is limited by forming an opening 214 between the first spacer 208 and the third spacer 212. The raised active area 220 is formed in the opening 214 in a self-aligned manner, so that a better profile of the raised active area 220 may be achieved and the possible shorts between adjacent devices caused by an unlimited manner may be avoided. Moreover, based on such a manufacturing method, it is easy to make the gate electrode 204 to be flushed with the raised active area 220, and is also easy to implement the dual stress nitride process so as to increase the mobility of the device.
    Type: Grant
    Filed: September 26, 2010
    Date of Patent: June 11, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang
  • Publication number: 20130140624
    Abstract: The invention discloses a semiconductor structure comprising: a substrate, a conductor layer, and a dielectric layer surrounding the conductor layer on the substrate; a first insulating layer covering both of the conductor layer and the dielectric layer; a gate conductor layer formed on the first insulating layer, and a dielectric layer surrounding the gate conductor layer; and a second insulating layer covering both of the gate conductor layer and the dielectric layer surrounding the gate conductor layer; wherein a through hole filled with a semiconductor material penetrates through the gate conductor layer perpendicularly, the bottom of the through hole stops on the conductor layer, and a first conductor plug serving as a drain/source electrode is provided on the top of the through hole; and a second conductor plug serving as a source/drain electrode electrically contacts the conductor layer, and a third conductor plug serving as a gate electrode electrically contacts the gate conductor layer.
    Type: Application
    Filed: November 30, 2011
    Publication date: June 6, 2013
    Inventors: Qingqing Liang, Huicai Zhong, Huilong Zhu
  • Patent number: 8455323
    Abstract: There is provided a method for manufacturing a semiconductor wafer, comprising: performing heating so that metals dissolve into semiconductors of the wafer to form a semiconductor-metal compound; and performing cooling so that the formed semiconductor-metal compound retrogradely melt to form a mixture of the metals and the semiconductors. According to embodiments of the present invention, it is possible to achieve wafers of a high purity applicable to the semiconductor manufacture.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: June 4, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang, Chao Zhao
  • Publication number: 20130113025
    Abstract: The present invention provides a semiconductor device structure and a method for manufacturing the same. The method comprises: providing a semiconductor substrate, forming a first insulating layer on the surface of the semiconductor substrate; forming a shallow trench isolation embedded in the first insulating layer and the semiconductor substrate; forming a stripe-type trench embedded in the first insulating layer and the semiconductor substrate; forming a channel region in the trench; forming a gate stack line on the channel region and source/drain regions on opposite sides of the channel region. Embodiments of the present invention are applicable to manufacture of semiconductor devices.
    Type: Application
    Filed: February 25, 2011
    Publication date: May 9, 2013
    Inventors: Huicai Zhong, Qingqing Liang
  • Publication number: 20130093041
    Abstract: The invention relates to a semiconductor device and a method for manufacturing such a semiconductor device. A semiconductor device according to an embodiment of the invention may comprise: a substrate; a device region located on the substrate; and at least one stress introduction region separated from the device region by an isolation structure, with stress introduced into at least a portion of the at least one stress introduction region, wherein the stress introduced into the at least a portion of the at least one stress introduction region is produced by utilizing laser to illuminate an amorphized portion comprised in the at least one stress introduction region to recrystallize the amorphized portion. The semiconductor device according to an embodiment of the invention produces stress in a simpler manner and thereby improves the performance of the device.
    Type: Application
    Filed: November 30, 2011
    Publication date: April 18, 2013
    Inventors: Qingqing Liang, Huaxiang Yin, Huicai Zhong, Huilong Zhu
  • Patent number: 8420492
    Abstract: The invention provides a MOS transistor and a method for forming the MOS transistor. The MOS transistor includes a semiconductor substrate; a gate stack on the semiconductor substrate, and including a gate dielectric layer and a gate electrode on the semiconductor substrate in sequence; a source region and a drain region, respectively at sidewalls of the gate stack sidewalls of the gate stack and in the semiconductor; sacrificial metal spacers on sidewalls of the gate stack sidewalls of the gate stack, and having tensile stress or compressive stress. This invention scales down the equivalent oxide thickness, improves uniformity of device performance, raises carrier mobility and promotes device performance.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: April 16, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang, Da Yang, Chao Zhao
  • Patent number: 8410609
    Abstract: The present invention relates to a semiconductor device structure and a method for manufacturing the same; the structure comprises: a semiconductor substrate on which a device structure is formed thereon; an interlayer dielectric layer formed on the device structure, wherein a trench is formed in the interlayer dielectric layer, the trench comprises an incorporated via trench and a conductive wiring trench, and the conductive wiring trench is positioned on the via trench; and a conductive layer filled in the trench, wherein the conductive layer is electrically connected with the device structure; wherein the conductive layer comprises a conductive material and a nanotube/wire layer surrounded by the conductive material. Wherein, the conductive layer comprises a conductive material and a nanotube/wire layer surrounded by the conductive material.
    Type: Grant
    Filed: February 26, 2011
    Date of Patent: April 2, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang, Zhijiong Luo, Huilong Zhu
  • Publication number: 20130062708
    Abstract: A semiconductor device structure, a method for manufacturing the same, and a method for manufacturing a semiconductor fin are disclosed. In one embodiment, the method for manufacturing the semiconductor device structure comprises: forming a fin in a first direction on a semiconductor substrate; forming a gate line in a second direction, the second direction crossing the first direction on the semiconductor substrate, and the gate line intersecting the fin with a gate dielectric layer sandwiched between the gate line and the fin; forming a dielectric spacer surrounding the gate line; and performing inter-device electrical isolation at a predetermined position, wherein isolated portions of the gate line form independent gate electrodes of respective devices.
    Type: Application
    Filed: November 18, 2011
    Publication date: March 14, 2013
    Inventors: Huicai Zhong, Qingqing Liang, Jun Luo, Chao Zhao
  • Publication number: 20130049092
    Abstract: The present application discloses a semiconductor device comprising a source region and a drain region in an ultra-thin semiconductor layer; a channel region between the source region and the drain region in the ultra-thin semiconductor layer; a front gate stack above the channel region, the front gate comprising a front gate and a front gate dielectric between the front gate and the channel region; and a back gate stack below the channel region, the back gate stack comprising a back gate and a back gate dielectric between the back gate and the channel region, wherein the front gate is made of a high-Vt material, and the back gate is made of a low-Vt material. According to another embodiment, the front gate and the back gate are made of the same material, and the back gate is applied with a forward bias voltage during operation. The semiconductor device alleviates threshold voltage fluctuation due to varied thickness of the channel region by means of the back gate.
    Type: Application
    Filed: November 18, 2011
    Publication date: February 28, 2013
    Inventors: Qingqing Liang, Miao Xu, Huilong Zhu, Huicai Zhong
  • Publication number: 20130049125
    Abstract: A semiconductor device structure and a method for manufacturing the same are disclosed. In one embodiment, the method comprises: forming a fin in a first direction on a semiconductor substrate; forming a gate line in a second direction crossing the first direction on the semiconductor substrate, the gate line intersecting the fin via a gate dielectric layer; forming a dielectric spacer surrounding the gate line; forming a conductive spacer surrounding the dielectric spacer; and performing inter-device electrical isolation at a predetermined region, wherein isolated portions of the gate line form gate electrodes of respective unit devices, and isolated portions of the conductive spacer form contacts of the respective unit devices.
    Type: Application
    Filed: August 29, 2011
    Publication date: February 28, 2013
    Inventors: Huicai Zhong, Jun Luo, Qingqing Liang, Huilong Zhu
  • Publication number: 20130045588
    Abstract: A method for manufacturing a semiconductor device is disclosed, comprising: providing a substrate, a gate region on the substrate and a semiconductor region at both sides of the gate region; forming sacrificial spacers, which cover a portion of the semiconductor region, on sidewalls of the gate region; forming a metal layer on a portion of the semiconductor region outside the sacrificial spacers and on the gate region; removing the sacrificial spacers; performing annealing so that the metal layer reacts with the semiconductor region to form a metal-semiconductor compound layer on the semiconductor region; and removing unreacted metal layer. By separating the metal layer from the channel and the gate region of the device with the thickness of the sacrificial spacers, the effect of metal layer diffusion on the channel and the gate region is reduced and performance of the device is improved.
    Type: Application
    Filed: December 5, 2011
    Publication date: February 21, 2013
    Inventors: Huicai Zhong, Jun Luo, Chao Zhao, Qingqing Liang
  • Publication number: 20130037859
    Abstract: A semiconductor device and a method for programming the same are provided. The semiconductor device comprises: a semiconductor substrate with an interconnect formed therein; a Through-Silicon Via (TSV) penetrating through the semiconductor substrate; and a programmable device which can be switched between on and off states, the TSV being connected to the interconnect by the programmable device. The present invention is beneficial in improving flexibility of TSV application.
    Type: Application
    Filed: August 12, 2011
    Publication date: February 14, 2013
    Inventors: Huicai Zhong, Qingqing Liang, Chao Zhao, Huilong Zhu
  • Publication number: 20130020578
    Abstract: The invention relates to a semiconductor device and a method for manufacturing such a semiconductor device. A semiconductor device according to an embodiment of the invention may comprise: an active fin region which is arranged on an insulating layer; a threshold voltage adjusting layer arranged on top of the active fin region, which threshold voltage adjusting layer is used to adjust the threshold voltage of the semiconductor device; a gate stack which is arranged on the threshold voltage adjusting layer, on the sidewalls of the active fin region and on the insulating layer, and comprises a gate dielectric and a gate electrode formed on the gate dielectric; and a source region and a drain region formed in the active fin region on both sides of the gate stack respectively. The semiconductor device according to the invention comprises the threshold voltage adjusting layer which may adjust the threshold voltage of the semiconductor device.
    Type: Application
    Filed: November 30, 2011
    Publication date: January 24, 2013
    Inventors: Qingqing Liang, Huilong Zhu, Huicai Zhong