Patents by Inventor Huicheng Chang

Huicheng Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210111035
    Abstract: In a gate last metal gate process for forming a transistor, a dielectric layer is formed over an intermediate transistor structure, the intermediate structure including a dummy gate electrode, typically formed of polysilicon. Various processes, such as patterning the polysilicon, planarizing top layers of the structure, and the like can remove top portions of the dielectric layer, which can result in decreased control of gate height when a metal gate is formed in place of the dummy gate electrode, decreased control of fin height for finFETs, and the like. Increasing the resistance of the dielectric layer to attack from these processes, such as by implanting silicon or the like into the dielectric layer before such other processes are performed, results in less removal of the top surface, and hence improved control of the resulting structure dimensions and performance.
    Type: Application
    Filed: November 30, 2020
    Publication date: April 15, 2021
    Inventors: Su-Hao Liu, Tsan-Chun Wang, Liang-Yin Chen, Jing-Huei Huang, Lun-Kuang Tan, Huicheng Chang
  • Patent number: 10978344
    Abstract: A method includes forming a gate stack over a first semiconductor region, removing a second portion of the first semiconductor region on a side of the gate stack to form a recess, growing a second semiconductor region starting from the recess, implanting the second semiconductor region with an impurity, and performing a melting laser anneal on the second semiconductor region. A first portion of the second semiconductor region is molten during the melting laser anneal, and a second and a third portion of the second semiconductor region on opposite sides of the first portion are un-molten.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: April 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Su-Hao Liu, Wen-Yen Chen, Tz-Shian Chen, Cheng-Jung Sung, Li-Ting Wang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Syun-Ming Jang
  • Publication number: 20210098365
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a substrate, a gate structure, a dielectric structure and a contact structure. The substrate has source/drain (S/D) regions. The gate structure is on the substrate and between the S/D regions. The dielectric structure covers the gate structure. The contact structure penetrates through the dielectric structure to connect to the S/D region. A lower portion of a sidewall of the contact structure is spaced apart from the dielectric structure by an air gap therebetween, while an upper portion of the sidewall of the contact structure is in contact with the dielectric structure.
    Type: Application
    Filed: March 2, 2020
    Publication date: April 1, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Pei-Yu Chou, Jr-Hung Li, Liang-Yin Chen, Su-Hao Liu, Tze-Liang Lee, Meng-Han Chou, Kuo-Ju Chen, Huicheng Chang, Tsai-Jung Ho, Tzu-Yang Ho
  • Publication number: 20210098599
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 1, 2021
    Inventors: Wei-Ting Chien, Liang-Yin Chen, Yi-Hsiu Liu, Tsung-Lin Lee, Huicheng Chang
  • Publication number: 20210096473
    Abstract: In a method of forming a pattern, a photo resist layer is formed over an underlying layer, the photo resist layer is exposed to an actinic radiation carrying pattern information, the exposed photo resist layer is developed to form a developed resist pattern, a directional etching operation is applied to the developed resist pattern to form a trimmed resist pattern, and the underlying layer is patterned using the trimmed resist pattern as an etching mask.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 1, 2021
    Inventors: Ru-Gun LIU, Huicheng CHANG, Chia-Cheng CHEN, Jyu-Horng SHIEH, Liang-Yin CHEN, Shu-Huei SUEN, Wei-Liang LIN, Ya Hui CHANG, Yi-Nien SU, Yung-Sung YEN, Chia-Fong CHANG, Ya-Wen YEH, Yu-Tien SHEN
  • Publication number: 20210091209
    Abstract: A finFET device and methods of forming a finFET device are provided. The device includes a fin and a capping layer over the fin. The device also includes a gate stack over the fin, the gate stack including a gate electrode and a gate dielectric. The gate dielectric extends along sidewalls of the capping layer. The device further includes a gate spacer adjacent to sidewalls of the gate electrode, the capping layer being interposed between the gate spacer and the fin.
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Inventors: Chia-Cheng Chen, Huicheng Chang, Liang-Yin Chen
  • Publication number: 20210083056
    Abstract: A FinFET is provided including a channel region containing a constituent element and excess atoms, the constituent element belonging to a group of the periodic table of elements, wherein said excess atoms are nitrogen, or belong to said group of the periodic table of elements, and a concentration of said excess atoms in the channel region is in the range between about 1019 cm?3 and about 1020 cm?3.
    Type: Application
    Filed: September 17, 2019
    Publication date: March 18, 2021
    Inventors: Yu-Chang Lin, Tien-Shun Chang, Chun-Feng Nieh, Huicheng Chang
  • Patent number: 10950694
    Abstract: The present disclosure relates generally to doping for conductive features in a semiconductor device. In an example, a structure includes an active region of a transistor. The active region includes a source/drain region, and the source/drain region is defined at least in part by a first dopant having a first dopant concentration. The source/drain region further includes a second dopant with a concentration profile having a consistent concentration from a surface of the source/drain region into a depth of the source/drain region. The consistent concentration is greater than the first dopant concentration. The structure further includes a conductive feature contacting the source/drain region at the surface of the source/drain region.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: March 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Su-Hao Liu, Huicheng Chang, Chia-Cheng Chen, Liang-Yin Chen, Kuo-Ju Chen, Chun-Hung Wu, Chang-Maio Liu, Huai-Tei Yang, Lun-Kuang Tan, Wei-Ming You
  • Patent number: 10950447
    Abstract: Embodiment described herein provide a thermal treatment process following a high-pressure anneal process to keep hydrogen at an interface between a channel region and a gate dielectric layer in a field effect transistor while removing hydrogen from the bulk portion of the gate dielectric layer. The thermal treatment process can reduce the amount of threshold voltage shift caused by a high-pressure anneal. The high-pressure anneal and the thermal treatment process may be performed any time after formation of the gate dielectric layer, thus, causing no disruption to the existing process flow.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: March 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hongfa Luan, Yi-Fan Chen, Chun-Yen Peng, Cheng-Po Chau, Wen-Yu Ku, Huicheng Chang
  • Publication number: 20210066500
    Abstract: A device includes a fin extending from a semiconductor substrate; a gate stack over the fin; a first spacer on a sidewall of the gate stack; a source/drain region in the fin adjacent the first spacer; an inter-layer dielectric layer (ILD) extending over the gate stack, the first spacer, and the source/drain region, the ILD having a first portion and a second portion, wherein the second portion of the ILD is closer to the gate stack than the first portion of the ILD; a contact plug extending through the ILD and contacting the source/drain region; a second spacer on a sidewall of the contact plug; and an air gap between the first spacer and the second spacer, wherein the first portion of the ILD extends across the air gap and physically contacts the second spacer, wherein the first portion of the ILD seals the air gap.
    Type: Application
    Filed: May 21, 2020
    Publication date: March 4, 2021
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Kai-Hsuan Lee, I-Hsieh Wong, Cheng-Yu Yang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Syun-Ming Jang, Meng-Han Chou
  • Publication number: 20210057276
    Abstract: A method includes forming a gate stack over a first semiconductor region, removing a second portion of the first semiconductor region on a side of the gate stack to form a recess, growing a second semiconductor region starting from the recess, implanting the second semiconductor region with an impurity, and performing a melting laser anneal on the second semiconductor region. A first portion of the second semiconductor region is molten during the melting laser anneal, and a second and a third portion of the second semiconductor region on opposite sides of the first portion are un-molten.
    Type: Application
    Filed: August 23, 2019
    Publication date: February 25, 2021
    Inventors: Su-Hao Liu, Wen-Yen Chen, Tz-Shian Chen, Cheng-Jung Sung, Li-Ting Wang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Syun-Ming Jang
  • Patent number: 10930507
    Abstract: A method of forming a semiconductor device includes performing a first implantation process on a semiconductor substrate to form a deep p-well region, performing a second implantation process on the semiconductor substrate with a diffusion-retarding element to form a co-implantation region, and performing a third implantation process on the semiconductor substrate to form a shallow p-well region over the deep p-well region. The co-implantation region is spaced apart from a top surface of the semiconductor substrate by a portion of the shallow p-well region, and the dee p-well region and the shallow p-well region are joined with each other. An n-type Fin Field-Effect Transistor (FinFET) is formed, with the deep p-well region and the shallow p-well region acting as a well region of the n-type FinFET.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: February 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sih-Jie Liu, Chun-Feng Nieh, Huicheng Chang
  • Patent number: 10916546
    Abstract: A semiconductor device includes a substrate, a fin structure and an isolation layer formed on the substrate and adjacent to the fin structure. The semiconductor device includes a gate structure formed on at least a portion of the fin structure and the isolation layer. The semiconductor device includes an epitaxial layer including a strained material that provides stress to a channel region of the fin structure. The epitaxial layer has a first region and a second region, in which the first region has a first doping concentration of a first doping agent and the second region has a second doping concentration of a second doping agent. The first doping concentration is greater than the second doping concentration. The epitaxial layer is doped by ion implantation using phosphorous dimer.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: February 9, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Chang Lin, Chun-Feng Nieh, Huicheng Chang, Hou-Yu Chen, Yong-Yan Lu
  • Publication number: 20200411672
    Abstract: A finFET device and methods of forming a finFET device are provided. The method includes depositing a dummy gate over and along sidewalls of a fin extending upwards from a semiconductor substrate, forming a first gate spacer along a sidewall of the dummy gate, and plasma-doping the first gate spacer with carbon to form a carbon-doped gate spacer. The method further includes forming a source/drain region adjacent a channel region of the fin and diffusing carbon from the carbon-doped gate spacer into a first region of the fin to provide a first carbon-doped region. The first carbon-doped region is disposed between at least a portion of the source/drain region and the channel region of the fin.
    Type: Application
    Filed: September 6, 2020
    Publication date: December 31, 2020
    Inventors: Yu-Chang Lin, Chun-Feng Nieh, Huicheng Chang, Wei-Ting Chien, Chih-Pin Tsao, Hou-Ju Li, Tien-Shun Chang
  • Patent number: 10879371
    Abstract: Embodiments described in this disclosure relate to formation of a gate structure of a device, such as in a replacement gate process, and the device formed thereby. In some examples, after an interfacial layer and a gate dielectric layer are deposited, a rapid anneal process, such as laser anneal or flash lamp anneal process, is performed in a controlled ambient nitrogen-containing environment to form a nitrided portion in the gate dielectric layer. The nitrided portion passivates the defects at the surface of the gate dielectric layer and can serve as a barrier to prevent etchant chemistry and defects/dopants from the subsequent gate stack layers from affecting or diffusing through the gate dielectric layer. Particularly, the rapid anneal process is performed on a millisecond scale to confine nitrogen atoms in the gate dielectric layer without diffusing into the underlying interfacial dielectric and/or any neighboring structure such as fin.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: December 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Yun Li, Huicheng Chang, Che-Hao Chang, Hung-Yao Chen, Cheng-Po Chau, Xiong-Fei Yu, Terry Huang
  • Publication number: 20200402853
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a gate structure over a fin structure. The semiconductor structure also includes a source/drain structure in the fin structure and adjacent to the gate structure. The semiconductor structure also includes a first contact plug over the source/drain structure. The semiconductor structure also includes a first via plug over the first contact plug. The semiconductor structure also includes a dielectric layer surrounding the first via plug. The first via plug includes a first group IV element and the dielectric layer includes the first group IV element and a second group IV element.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 24, 2020
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung-Po HSIEH, Su-Hao LIU, Hong-Chih LIU, Jing-Huei HUANG, Jie-Huang HUANG, Lun-Kuang TAN, Huicheng CHANG, Liang-Yin CHEN, Kuo-Ju CHEN
  • Publication number: 20200395481
    Abstract: An embodiment is a method of manufacturing a semiconductor device. The method includes forming a fin on a substrate. A gate structure is formed over the fin. A recess is formed in the fin proximate the gate structure. A gradient doped region is formed in the fin with a p-type dopant. The gradient doped region extends from a bottom surface of the recess to a vertical depth below the recess in the fin. A source/drain region is formed in the recess and on the gradient doped regions.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 17, 2020
    Inventors: Jyun-Hao Lin, Chun-Feng Nieh, Yu-Chang Lin, Huicheng Chang
  • Publication number: 20200395462
    Abstract: A semiconductor device, and a method of manufacturing, is provided. A dummy gate is formed on a semiconductor substrate. An interlayer dielectric (ILD) is formed over the semiconductor fin. A dopant is implanted into the ILD. The dummy gate is removed and an anneal is performed on the ILD. The implantation and the anneal lead to an enhancement of channel resistance by a reduction in gate dielectric thickness and to an enlargement of critical dimensions of a metal gate.
    Type: Application
    Filed: June 14, 2019
    Publication date: December 17, 2020
    Inventors: Yu-Chang Lin, Tien-Shun Chang, Szu-Ying Chen, Chun-Feng Nieh, Sen-Hong Syue, Huicheng Chang
  • Patent number: 10868142
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Ting Chien, Liang-Yin Chen, Yi-Hsiu Liu, Tsung-Lin Lee, Huicheng Chang
  • Patent number: 10867859
    Abstract: Methods of fabricating semiconductor devices are provided. The method includes forming a first fin and a second fin over a substrate, and conformally forming a silicon oxide layer over the first fin using a first atomic layer deposition (ALD) process. The method also includes conformally forming a silicon nitride layer over the silicon oxide layer using a second ALD process, and forming an insulating layer to fill the trench between the first fin and the second fin over the substrate. The method further includes recessing the insulating layer, the silicon oxide layer, and the silicon nitride layer to form an isolation structure with a liner. In addition, the method includes forming a gate structure over the first fin, and forming a source region and a drain region in the first fin and on opposite sides of the gate structure.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsueh-Ju Chen, Xiong-Fei Yu, Chi-On Chui, Yee-Chia Yeo, Huicheng Chang