Patents by Inventor Huimin Sun

Huimin Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240117796
    Abstract: A distance adjustment apparatus and a control method of the distance adjustment apparatus are provided. The distance adjustment apparatus includes a connection component, and the connection component includes a first component and a second component. The first component is connected to the second component, and a memory alloy component is disposed in a connection region between the first component and the second component. The memory alloy component is controlled by a current to drive the first component and the second component to move closer to and/or away from each other.
    Type: Application
    Filed: January 21, 2022
    Publication date: April 11, 2024
    Inventors: Gang Ni, Yufei Sun, Huimin Zhang, Jenhui Liao, Dexin Xu, Xuhai Zhang
  • Patent number: 11143207
    Abstract: Methods and systems are provided for a turbocharger system to reduce and balance axial thrust load on the turbine shaft and the associated bearing system and sealing. In one example, a partial back plate compressor may be used in combination with an axial turbine to reduce axial thrust load and to improve turbocharger transient response time. In another example, a regenerative turbocharger system with back-to-back turbo pump may be used to reduce and balance axial thrust load.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: October 12, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: Harold Huimin Sun, Leon Hu, Dave R. Hanna, Jianwen James Yi, Eric Warren Curtis
  • Patent number: 10519799
    Abstract: Various systems and methods are described for a variable geometry turbine. In one example, a nozzle vane includes a stationary having a first cambered sliding surface and a sliding vane having a second cambered sliding surface where the second cambered sliding surface includes a flow disrupting feature in contact with the first sliding cambered surface. The sliding vane may be positioned to slide in a direction from substantially tangent along a curved path to an inner circumference of the turbine nozzle and selectively uncover the flow disrupting feature.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: December 31, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Harold Huimin Sun, Ben Zhao, Leon Hu, Jianwen James Yi, Eric Warren Curtis, Jizhong Zhang
  • Publication number: 20190338787
    Abstract: Methods and systems are provided for a turbocharger system to reduce and balance axial thrust load on the turbine shaft and the associated bearing system and sealing. In one example, a partial back plate compressor may be used in combination with an axial turbine to reduce axial thrust load and to improve turbocharger transient response time. In another example, a regenerative turbocharger system with back-to-back turbo pump may be used to reduce and balance axial thrust load.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Inventors: Harold Huimin Sun, Leon Hu, Dave R. Hanna, Jianwen James Yi, Eric Warren Curtis
  • Patent number: 10428727
    Abstract: A system for increasing temperature in an exhaust aftertreatment system upstream of an exhaust aftertreatment device, such as a selective catalyst reduction (SCR) device, is provided. In one form, the system includes a component within an exhaust stream being exposed to exhaust flow and temperatures of at least 200° C. At least one surface of the component includes an adhered ceramic coating that functions as a catalyst to accelerate heating of the exhaust flow. In another form, a secondary catalyst is adhered to the ceramic coating. The component may be a part or parts of a turbocharger, such as nozzles, vanes, runners, and blades.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: October 1, 2019
    Assignee: Ford Motor Company
    Inventors: Deren Wang, Harold Huimin Sun, Xin Liu, Douglas Allen Dobson
  • Patent number: 10415599
    Abstract: Methods and systems are provided for a turbocharger system to reduce and balance axial thrust load on the turbine shaft and the associated bearing system and sealing. In one example, a partial back plate compressor may be used in combination with an axial turbine to reduce axial thrust load and to improve turbocharger transient response time. In another example, a regenerative turbocharger system with back-to-back turbo pump may be used to reduce and balance axial thrust load.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: September 17, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Harold Huimin Sun, Leon Hu, Dave R. Hanna, Jianwen James Yi, Eric Warren Curtis
  • Patent number: 10107296
    Abstract: Systems and methods are provided for a turbocharger compressor, where the system may comprise: an actuatable annular disk comprising choke slots therein; an outer annular disk comprising choke slots therein; and an actuator to rotate the actuatable annular disk relative to the outer annular disk to vary alignment of the choke slots of the actuatable annular disk and the outer annular disk. The actuator may be controlled by an engine controller responsive to operating conditions of the compressor and actuated to align choke slots. Alignment of the choke slots allows air to be drawn into the impeller effectively expanding the compressor flow capacity to prevent compressor choke.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: October 23, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Harold Huimin Sun, Dave R. Hanna, Thomas Polley, Liangjun Hu, Daniel William Kantrow
  • Publication number: 20180298804
    Abstract: A system for increasing temperature in an exhaust aftertreatment system upstream of an exhaust aftertreatment device, such as a selective catalyst reduction (SCR) device, is provided. In one form, the system includes a component within an exhaust stream being exposed to exhaust flow and temperatures of at least 200° C. At least one surface of the component includes an adhered ceramic coating that functions as a catalyst to accelerate heating of the exhaust flow. In another form, a secondary catalyst is adhered to the ceramic coating. The component may be a part or parts of a turbocharger, such as nozzles, vanes, runners, and blades.
    Type: Application
    Filed: April 14, 2017
    Publication date: October 18, 2018
    Applicant: Ford Motor Company
    Inventors: Deren Wang, Harold Huimin Sun, Xin Liu, Douglas Allen Dobson
  • Patent number: 9945258
    Abstract: Systems are provided for a reinforcement element coupled to a sheet metal turbine housing that imparts desirable thermal-protective and structurally strengthening characteristics to the housing layers. In one example, a system may include a turbine comprising a housing surrounding a turbine rotor, the housing having an outer layer surrounding an inner layer at a distance to form an intermediate space between the inner and outer layers. Moreover, disposed in the intermediate space is a reinforcement element coupled to the inner and outer layers, providing strength and consistent rigidity without a significant increase in weight to the housing.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: April 17, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Harold Huimin Sun, Leon Hu, David R Hanna
  • Publication number: 20180087453
    Abstract: Various systems and methods are described for a variable geometry turbine. In one example, a nozzle vane includes a stationary having a first cambered sliding surface and a sliding vane having a second cambered sliding surface where the second cambered sliding surface includes a flow disrupting feature in contact with the first sliding cambered surface. The sliding vane may be positioned to slide in a direction from substantially tangent along a curved path to an inner circumference of the turbine nozzle and selectively uncover the flow disrupting feature.
    Type: Application
    Filed: December 1, 2017
    Publication date: March 29, 2018
    Inventors: Harold Huimin Sun, Ben Zhao, Leon Hu, Jianwen James Yi, Eric Warren Curtis, Jizhong Zhang
  • Patent number: 9890700
    Abstract: Various systems and methods are described for a variable geometry turbine. In one example, a nozzle vane includes a stationary having a first cambered sliding surface and a sliding vane having a second cambered sliding surface where the second cambered sliding surface includes a flow disrupting feature in contact with the first sliding cambered surface. The sliding vane may be positioned to slide in a direction from substantially tangent along a curved path to an inner circumference of the turbine nozzle and selectively uncover the flow disrupting feature.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: February 13, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Harold Huimin Sun, Ben Zhao, Leon Hu, Jianwen James Yi, Eric Warren Curtis, Jizhong Zhang
  • Publication number: 20170122339
    Abstract: Methods and systems are provided for a turbocharger system to reduce and balance axial thrust load on the turbine shaft and the associated bearing system and sealing. In one example, a partial back plate compressor may be used in combination with an axial turbine to reduce axial thrust load and to improve turbocharger transient response time. In another example, a regenerative turbocharger system with back-to-back turbo pump may be used to reduce and balance axial thrust load.
    Type: Application
    Filed: October 30, 2015
    Publication date: May 4, 2017
    Inventors: Harold Huimin Sun, Leon Hu, Dave R. Hanna, Jianwen James Yi, Eric Warren Curtis
  • Publication number: 20160146100
    Abstract: Various systems and methods are described for a variable geometry turbine. In one example, a nozzle vane includes a stationary having a first cambered sliding surface and a sliding vane having a second cambered sliding surface where the second cambered sliding surface includes a flow disrupting feature in contact with the first sliding cambered surface. The sliding vane may be positioned to slide in a direction from substantially tangent along a curved path to an inner circumference of the turbine nozzle and selectively uncover the flow disrupting feature.
    Type: Application
    Filed: May 11, 2015
    Publication date: May 26, 2016
    Inventors: Harold Huimin Sun, Ben Zhao, Leon Hu, Jianwen James Yi, Eric Warren Curtis, Jizhong Zhang
  • Publication number: 20160102579
    Abstract: Systems are provided for a reinforcement element coupled to a sheet metal turbine housing that imparts desirable thermal-protective and structurally strengthening characteristics to the housing layers. In one example, a system may include a turbine comprising a housing surrounding a turbine rotor, the housing having an outer layer surrounding an inner layer at a distance to form an intermediate space between the inner and outer layers. Moreover, disposed in the intermediate space is a reinforcement element coupled to the inner and outer layers, providing strength and consistent rigidity without a significant increase in weight to the housing.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 14, 2016
    Inventors: Harold Huimin Sun, Leon Hu, David R. Hanna
  • Patent number: 9267427
    Abstract: Embodiments may provide variable geometry turbine, a nozzle vane for a variable geometry turbine, and a method. The variable geometry turbine that may include a turbine wheel and a plurality of adjustable vanes radially positioned around the turbine wheel. The turbine may also include a flow disrupting feature on one or more outside surfaces of one or more of the plurality of adjustable vanes.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: February 23, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Harold Huimin Sun, Liangjun Hu, Ben Zhao, Dave R. Hanna
  • Patent number: 9243551
    Abstract: A method for operation of an engine including a turbocharger system is provided. The method includes adjusting turbocharger rotational acceleration or deceleration in response to one or more resonant frequencies. Additionally in some examples, the method may further include increasing turbocharger rotation in response to one or more resonant frequencies during a first condition, and increasing turbocharger deceleration in response to one or more resonant frequencies during a second condition, the second condition different from the first condition. In this way, it is possible to enhance the useful life cycle of the turbocharger and associated engine by limiting the operating time in a resonant frequency band.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: January 26, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Harold Huimin Sun, Yong Shu, Dave Hanna, Tim Schram
  • Patent number: 9151200
    Abstract: A vehicle system operation method is provided. The method comprises, during a first operating condition, increasing back pressure in a first exhaust conduit positioned upstream of a turbine and downstream of a first emission control device and during a second operating condition, reducing back pressure in the first exhaust conduit and flowing boosted air from downstream of a compressor into a second exhaust conduit positioned upstream of a second emission control device and downstream of the turbine.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: October 6, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Xiaogang Zhang, Jianwen James Yi, Wen Dai, Paul M. Laing, John Hedges, Julia Helen Buckland, Harold Huimin Sun
  • Patent number: D960610
    Type: Grant
    Filed: February 7, 2021
    Date of Patent: August 16, 2022
    Inventor: Huimin Sun
  • Patent number: D968847
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: November 8, 2022
    Assignee: Shaoxing FaLanMiKe Electronic Commerce Co., Ltd.
    Inventor: Huimin Sun
  • Patent number: D993675
    Type: Grant
    Filed: July 5, 2021
    Date of Patent: August 1, 2023
    Inventor: Huimin Sun