Patents by Inventor Hun-Hyeong Lim

Hun-Hyeong Lim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9064736
    Abstract: A method of manufacturing a three-dimensional semiconductor memory device is provided. The method includes alternately stacking a first insulation film, a first sacrificial film, alternating second insulation films and second sacrificial films, a third sacrificial film and a third insulation film on a substrate. A channel hole is formed to expose a portion of the substrate while passing through the first insulation film, the first sacrificial film, the second insulation films, the second sacrificial films, the third sacrificial film and the third insulation film. The method further includes forming a semiconductor pattern on the portion of the substrate exposed in the channel hole by epitaxial growth. Forming the semiconductor pattern includes forming a lower epitaxial film, doping an impurity into the lower epitaxial film, and forming an upper epitaxial film on the lower epitaxial film.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: June 23, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joon-Suk Lee, Woong Lee, Hun-Hyeong Lim, Ki-Hyun Hwang
  • Publication number: 20150137210
    Abstract: A method of manufacturing a vertical memory device includes forming alternating and repeating insulating interlayers and sacrificial layers on a substrate, the sacrificial layers including polysilicon or amorphous silicon, forming channel holes through the insulating interlayers and the sacrificial layers, forming channels in the channel holes, etching portions of the insulating interlayers and the sacrificial layers between adjacent channels to form openings, removing the sacrificial layers to form gaps between the insulating interlayers, and forming gate lines in the gaps.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 21, 2015
    Inventors: Phil-Ouk NAM, Jun-Kyu YANG, Jin-Gyun KIM, Jae-Young AHN, Hun Hyeong LIM, Ki-Hyun HWANG
  • Publication number: 20150115348
    Abstract: A vertical-type nonvolatile memory device includes a first vertical channel structure, and first and second stacked structure. The first vertical channel structure extends vertically on a substrate. The first stacked structure includes gate electrodes and first interlayer insulating layers. The gate layers and the first interlayer insulating layers are alternately and vertically stacked on each other. The first stacked structure is disposed on a first sidewall of the first vertical channel structure. The second stacked structure includes first sacrificial layers and second interlayer insulating layers. The first sacrificial layers and the second interlayer insulating layers are alternately and vertically stacked on each other. The second stacked structure is disposed on a second sidewall of the first vertical channel structure. The first sacrificial layers is formed of a polysilicon layer.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 30, 2015
    Inventors: Phil-ouk Nam, Jun-kyu Yang, Hun-hyeong Lim, Ki-hyun Hwang, Jae-young Ahn, Dong-chul Yoo
  • Publication number: 20150104916
    Abstract: A method of manufacturing a three-dimensional semiconductor memory device is provided. The method includes alternately stacking a first insulation film, a first sacrificial film, alternating second insulation films and second sacrificial films, a third sacrificial film and a third insulation film on a substrate. A channel hole is formed to expose a portion of the substrate while passing through the first insulation film, the first sacrificial film, the second insulation films, the second sacrificial films, the third sacrificial film and the third insulation film. The method further includes forming a semiconductor pattern on the portion of the substrate exposed in the channel hole by epitaxial growth. Forming the semiconductor pattern includes forming a lower epitaxial film, doping an impurity into the lower epitaxial film, and forming an upper epitaxial film on the lower epitaxial film.
    Type: Application
    Filed: April 8, 2014
    Publication date: April 16, 2015
    Inventors: Joon-Suk Lee, Woong LEE, Hun-Hyeong LIM, Ki-Hyun HWANG
  • Patent number: 8994091
    Abstract: A non-volatile memory device having a vertical structure includes a semiconductor layer, a sidewall insulation layer extending in a vertical direction on the semiconductor layer, and having one or more protrusion regions, first control gate electrodes arranged in the vertical direction on the semiconductor layer, and respectively contacting one of portions of the sidewall insulation layer where the one or more protrusion regions are not formed and second control gate electrodes arranged in the vertical direction on the semiconductor layer, and respectively contacting one of the one or more protrusion regions.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: March 31, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Hoon Lee, Jin-Gyun Kim, Koong-Hyun Nam, Ki-Hyun Hwang, Hun-Hyeong Lim, Dong-Kyum Kim
  • Publication number: 20140332875
    Abstract: A method of manufacturing a vertical memory device is disclosed. In the method, a plurality of insulation layers and a plurality of first sacrificial layers are alternately stacked on a substrate. A plurality of holes is formed through the plurality of insulation layers and first sacrificial layers. A plasma treatment process is performed to oxidize the first sacrificial layers exposed by the holes. A plurality of second sacrificial layer patterns project from sidewalls of the holes. A blocking layer pattern, a charge storage layer pattern and a tunnel insulation layer pattern are formed on the sidewall of the holes that cover the second sacrificial layer patterns. A plurality of channels is formed to fill the holes. The first sacrificial layers and the second sacrificial layer patterns are removed to form a plurality of gaps exposing a sidewall of the blocking layer pattern. A plurality of gate electrodes is formed to fill the gaps.
    Type: Application
    Filed: February 19, 2014
    Publication date: November 13, 2014
    Inventors: Jung-Hwan Kim, Jun-Kyu Yang, Hun-Hyeong Lim, Jae-ho Choi, Ki-Hyun Hwang
  • Patent number: 8659069
    Abstract: A method of forming a gate structure includes forming a tunnel insulation layer pattern on a substrate, forming a floating gate on the tunnel insulation layer pattern, forming a dielectric layer pattern on the floating gate, the dielectric layer pattern including a first oxide layer pattern, a nitride layer pattern on the first oxide layer pattern, and a second oxide layer pattern on the nitride layer pattern, the second oxide layer pattern being formed by performing an anisotropic plasma oxidation process on the nitride layer, such that a first portion of the second oxide layer pattern on a top surface of the floating gate has a larger thickness than a second portion of the second oxide layer pattern on a sidewall of the floating gate, and forming a control gate on the second oxide layer.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: February 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Hwan Kim, Sung-Ho Heo, Jae-Ho Choi, Hun-Hyeong Lim, Ki-Hyun Hwang, Woo-Sung Lee
  • Patent number: 8614476
    Abstract: Non-volatile memory devices, and fabricating methods thereof, include a floating gate over a substrate, a lower barrier layer including a first lower barrier layer on the upper surface of the floating gate, and a second lower barrier layer on a side surface of the floating gate to have a thickness smaller than a thickness of the first lower barrier layer, an inter-gate dielectric layer over the lower barrier layer, and a control gate over the inter-gate dielectric layer.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: December 24, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hong-Suk Kim, Yong-Seok Kim, Hun-Hyeong Lim, Ki-Hyun Hwang
  • Patent number: 8445367
    Abstract: In a method of manufacturing a semiconductor device, a plurality of sacrificial layers and a plurality of insulating interlayers are repeatedly and alternately on a substrate. The insulating interlayers include a different material from a material of the sacrificial layers. At least one opening through the insulating interlayers and the sacrificial layers are formed. The at least one opening exposes the substrate. The seed layer is formed on an inner wall of the at least one opening using a first silicon source gas. A polysilicon channel is formed in the at least one opening by growing the seed layer. The sacrificial layers are removed to form a plurality of grooves between the insulating interlayers. A plurality of gate structures is formed in the grooves, respectively.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: May 21, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Tae Noh, Hun-Hyeong Lim, Ki-Hyun Hwang, Jin-Gyun Kim, Sang-Ryol Yang
  • Publication number: 20130105880
    Abstract: Non-volatile memory devices, and fabricating methods thereof, include a floating gate over a substrate, a lower barrier layer including a first lower barrier layer on the upper surface of the floating gate, and a second lower barrier layer on a side surface of the floating gate to have a thickness smaller than a thickness of the first lower barrier layer, an inter-gate dielectric layer over the lower barrier layer, and a control gate over the inter-gate dielectric layer.
    Type: Application
    Filed: August 2, 2012
    Publication date: May 2, 2013
    Inventors: Hong-Suk Kim, Yong-Seok Kim, Hun-Hyeong Lim, Ki-Hyun Hwang
  • Publication number: 20120280304
    Abstract: A non-volatile memory device having a vertical structure includes a semiconductor layer, a sidewall insulation layer extending in a vertical direction on the semiconductor layer, and having one or more protrusion regions, first control gate electrodes arranged in the vertical direction on the semiconductor layer, and respectively contacting one of portions of the sidewall insulation layer where the one or more protrusion regions are not formed and second control gate electrodes arranged in the vertical direction on the semiconductor layer, and respectively contacting one of the one or more protrusion regions.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 8, 2012
    Inventors: SANG-HOON LEE, JIN-GYUN KIM, KOONG-HYUN NAM, KI-HYUN HWANG, HUN-HYEONG LIM, DONG-KYUM KIM
  • Publication number: 20120187470
    Abstract: A method of forming a gate structure includes forming a tunnel insulation layer pattern on a substrate, forming a floating gate on the tunnel insulation layer pattern, forming a dielectric layer pattern on the floating gate, the dielectric layer pattern including a first oxide layer pattern, a nitride layer pattern on the first oxide layer pattern, and a second oxide layer pattern on the nitride layer pattern, the second oxide layer pattern being formed by performing an anisotropic plasma oxidation process on the nitride layer, such that a first portion of the second oxide layer pattern on a top surface of the floating gate has a larger thickness than a second portion of the second oxide layer pattern on a sidewall of the floating gate, and forming a control gate on the second oxide layer.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 26, 2012
    Inventors: Jung-Hwan KIM, Sung-Ho Heo, Jae-Ho Choi, Hun-Hyeong Lim, Ki-Hyun Hwang, Woo-Sung Lee
  • Publication number: 20120115293
    Abstract: In a method of manufacturing a semiconductor device, a plurality of sacrificial layers and a plurality of insulating interlayers are repeatedly and alternately on a substrate. The insulating interlayers include a different material from a material of the sacrificial layers. At least one opening through the insulating interlayers and the sacrificial layers are formed. The at least one opening exposes the substrate. The seed layer is formed on an inner wall of the at least one opening using a first silicon source gas. A polysilicon channel is formed in the at least one opening by growing the seed layer. The sacrificial layers are removed to form a plurality of grooves between the insulating interlayers. A plurality of gate structures is formed in the grooves, respectively.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 10, 2012
    Inventors: Jin-Tae NOH, Hun-Hyeong Lim, Ki-Hyun Hwang, Jin-Gyun Kim, Sang-Ryol Yang
  • Publication number: 20120001264
    Abstract: Provided according to embodiments of the present invention are methods of fabricating semiconductor devices using an etchant. In some embodiments, the etchant may be highly selective and may act to reduce interference between wordlines in the semiconductor device. In some embodiments of the invention, provided are methods of fabricating a semiconductor device that include forming a plurality of gate patterns on a substrate; forming first insulation layers between the gate patterns; wet-etching the first insulation layers to form first insulation layer residues; and forming air gaps between the plurality of gate patterns. Related etchant solutions and semiconductor devices are also provided.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 5, 2012
    Inventors: Hong-suk Kim, Jin-gyun Kim, Hun-Hyeong Lim, Ki-hyun Hwang, Jae-Young Ahn, Jun-kyu Yang