Patents by Inventor Hung-Der Su

Hung-Der Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6251744
    Abstract: A layer of well oxide is grown over the n-well or p-well region of the semiconductor substrate. A deep n-well implant is performed in high voltage device region, followed by a deep n-well drive-in of the deep n-well implant. The well oxide is removed; the field oxide (FOX) region is created in the high voltage device region. A layer of sacrificial oxide is deposited on the surface of the semiconductor substrate. A low voltage cluster n-well implant is performed in the high voltage PMOS region of the semiconductor substrate followed, for the high voltage NMOS region, by a low voltage cluster p-well implant which is followed by a buried p-well cluster implant.
    Type: Grant
    Filed: July 19, 1999
    Date of Patent: June 26, 2001
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Hung-Der Su, Chrong-Jung Lin, Jong Chen, Wen-Ting Chu, Hung-Cheng Sung, Di-Son Kuo
  • Patent number: 6246075
    Abstract: An ensemble of test structures comprising arrays of polysilicon plate MOS capacitors for the measurement of electrical quality of the MOSFET gate insulation is described. The test structures also measure plasma damage to these gate insulators incurred during metal etching and plasma ashing of photoresist. The structures are formed, either on test wafers or in designated areas of wafers containing integrated circuit chips. One of the test structures is designed primarily to minimize plasma damage so that oxide quality, and defect densities may be measured unhampered by interface traps created by plasma exposure. Other structures provide different antenna-to-oxide area ratios, useful for assessing plasma induced oxide damage and breakdown. The current-voltage characteristics of the MOS capacitors are measured by probing the structures on the wafer, thereby providing timely process monitoring capability.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: June 12, 2001
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Hung-Der Su, Jian-Hsing Lee, Di-Son Kuo
  • Patent number: 6190969
    Abstract: A new method of fabricating a stacked gate Flash EEPROM device having an improved stacked gate topology is described. Isolation regions are formed on and in a semiconductor substrate. A tunneling oxide layer is provided on the surface of the semiconductor substrate. A first polysilicon layer is deposited overlying the tunneling oxide layer. The first polysilicon layer is polished away until the top surface of the polysilicon is flat and parallel to the top surface of the semiconductor substrate. The first polysilicon layer is etched away to form the floating gate. The source and drain regions are formed within the semiconductor substrate. An interpoly dielectric layer is deposited overlying the first polysilicon layer. A second polysilicon layer is deposited overlying the interpoly dielectric layer. The second polysilicon layer and the interpoly dielectric layer are etched away to form a control gate overlying the floating gate. An insulating layer is deposited overlying the oxide layer and the control gate.
    Type: Grant
    Filed: February 25, 1999
    Date of Patent: February 20, 2001
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chrong Jung Lin, Jong Chen, Hung-Der Su, Di-Son Kuo
  • Patent number: 6153494
    Abstract: A method is provided for forming a stacked-gate flash memory cell having a shallow trench isolation with a high-step of oxide and high lateral coupling. This is accomplished by first depositing an unconventionally high or thick layer of nitride and then forming a shallow trench isolation (STI) through the nitride layer into the substrate, filling the STI with isolation oxide, removing the nitride thus leaving behind a deep opening about the filled STI, filling conformally the opening with a first polysilicon layer to form a floating gate, forming interpoly oxide layer over the floating gate, and then forming a second polysilicon layer to form the control gate and finally forming the self-aligned source of the stacked-gate flash memory cell of the invention. A stacked-gate flash memory cell is also provided having a shallow trench isolation with a high-step of oxide and high lateral coupling.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: November 28, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chia-Ta Hsieh, Di-Son Kuo, Yai-Fen Lin, Chrong Jung Lin, Jong Chen, Hung-Der Su
  • Patent number: 6133096
    Abstract: A process for integrating the fabrication of a flash memory cell, on a first region of a semiconductor substrate, with the fabrication of salicided peripheral devices, on a second region of the semiconductor substrate, has been developed. The flash memory cell features SAC contact structures, located between stacked gate structures, contacting underlying source/drain regions. The stack gate structures are comprised of a polycide control gate shape, on a dielectric layer, overlying a polysilicon floating gate shape. The performance of the peripheral devices are increased via use of metal silicide layers, located on the top surface of a polysilicon gate structure, as well as on the adjacent heavily doped source/drain regions.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: October 17, 2000
    Inventors: Hung-Der Su, Jong Chen, Chrong-Jung Lin, Di-Son Kuo
  • Patent number: 6130168
    Abstract: A new method of forming differential gate oxide thicknesses for both high and low voltage transistors is described. A semiconductor substrate is provided wherein active areas of the substrate are isolated from other active areas by shallow trench isolation regions. A polysilicon layer is deposited overlying a tunneling oxide layer on the surface of the substrate. The polysilicon and tunneling oxide layers are removed except in the memory cell area. An ONO layer is deposited overlying the polysilicon layer in the memory cell area and on the surface of the substrate in the low voltage and high voltage areas. The ONO layer is removed in the high voltage area. The substrate is oxidized in the high voltage area to form a thick gate oxide layer. Thereafter, the ONO layer is removed in the low voltage area and the substrate is oxidized to form a thin gate oxide layer.
    Type: Grant
    Filed: July 8, 1999
    Date of Patent: October 10, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Wen-Ting Chu, Di-Son Kuo, Chrong-Jung Lin, Hung-Der Su, Jong Chen
  • Patent number: 6127227
    Abstract: A method of forming a flash memory cell is disclosed where nitrogen treatment or implantation is employed. Nitrogen introduced into the upper layers of the polysilicon of the floating gate is instrumental in forming an unusually thin layer comprising nitrogen-oxygen-silicon. This N--O--Si layer is formed while growing the bottom oxide layer of the oxide-nitride-oxide, or ONO, the intergate layer between the floating gate and the control gate of the flash memory cell. Nitrogen in the first polysilicon layer provides control for the thickness of the bottom oxide while at the same time suppressing the gradual gate oxidation (GGO) effect in the floating gate. The now augmented ONO composite through the N--O--Si layer provides an enhanced intergate dielectric and hence, a flash memory cell with more precise coupling ratio and better performance.
    Type: Grant
    Filed: January 25, 1999
    Date of Patent: October 3, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chrong Jung Lin, Jong Chen, Hung-Der Su, Di-Son Kuo
  • Patent number: 6124177
    Abstract: A method for making improved MOSFET structures is achieved. A Si.sub.3 N.sub.4 and a SiO.sub.2 layer are deposited and patterned to have openings for gate electrodes over device areas on a substrate. A second Si.sub.3 N.sub.4 layer is deposited and etched back to form arc-shaped sidewall spacers in the openings. An anti-punchthrough implant and a gate oxide are formed in the openings between the Si.sub.3 N.sub.4 sidewall spacers. A polysilicon layer is deposited and polished back to form gate electrodes. The SiO.sub.2 and the Si.sub.3 N.sub.4 layers, including the sidewall spacers, are removed to form free-standing gate electrodes that increase in width with height, and having arc-shaped sidewalls. An implant through the edges of the arc-shaped gate electrodes results in lightly doped source/drains that are graded both in junction depth and dopant concentration to reduce hot electron effects. A second SiO.sub.
    Type: Grant
    Filed: August 13, 1999
    Date of Patent: September 26, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chrong Jung Lin, Hung Der Su, Jong Chen, Wen Ting Chu
  • Patent number: 6074915
    Abstract: A combined method of fabricating embedded flash memory cells having salicide and self-aligned contact (SAC) structures is disclosed. The SAC structure of the cell region and the salicide contacts of the peripheral region of the semiconductor device are formed using a single mask. This is accomplished by a judicious sequence of formation and removal of the various layers including the doped first and second polysilicon layers in the memory cell and of the intrinsic polysilicon layer used in the peripheral circuits. Thus, the etching of the self-aligned contact hole of the memory cell is accomplished at the same time the salicided contact hole of the peripheral region is formed.
    Type: Grant
    Filed: August 17, 1998
    Date of Patent: June 13, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jong Chen, Chrong Jung Lin, Hung-Der Su, Di-Son Kuo
  • Patent number: 6037223
    Abstract: A process for fabricating a flash memory cell, featuring self-aligned contact structures, overlying and contacting, self-aligned source, and self-aligned drain regions, located between stack gate structures, has been developed. The stack gate structures, located on an underlying silicon dioxide, tunnel oxide layer, are comprised of: a capping insulator shape; a polysilicon control gate shape; an inter-polysilicon dielectric shape; and a polysilicon floating gate shape. The use of self-aligned contact structures, and self-aligned source regions, allows increased cell densities to be achieved.
    Type: Grant
    Filed: October 23, 1998
    Date of Patent: March 14, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Der Su, Chrong-Jung Lin, Jong Chen, Di-Son Kuo
  • Patent number: 6028324
    Abstract: An ensemble of test structures comprising arrays of polysilicon plate MOS capacitors for the measurement of electrical quality of the MOSFET gate insulation is described. The test structures also measure plasma damage to these gate insulators incurred during metal etching and plasma ashing of photoresist. The structures are formed, either on test wafers or in designated areas of wafers containing integrated circuit chips. One of the test structures is designed primarily to minimize plasma damage so that oxide quality, and defect densities may be measured unhampered by interface traps created by plasma exposure. Other structures provide different antenna-to-oxide area ratios, useful for assessing plasma induced oxide damage and breakdown. The current-voltage characteristics of the MOS capacitors are measured by probing the structures on the wafer, thereby providing timely process monitoring capability.
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: February 22, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Hung-Der Su, Jian-Hsing Lee, Di-Son Kuo
  • Patent number: 6001687
    Abstract: When FLASH cells are made in association with STI (as opposed to LOCOS) it is often the case that stringers of silicon nitride are left behind after the spacers have been formed. This problem has been eliminated by requiring that the oxide in the STI trenches remain in place at the time that the silicon nitride spacers are formed. After that, the oxide is removed in the usual manner, following which a SALICIDE process is used to form a self aligned source line. When this sequence is followed no stringers are left behind on the walls of the trench, guaranteeing the absence of any open circuits or high resistance regions in the source line.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: December 14, 1999
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Ting Chu, Di-Son Kuo, Chrong-Jung Lin, Hung-Der Su, Jong Chen