Patents by Inventor Hwa-sung Rhee

Hwa-sung Rhee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7611951
    Abstract: Example embodiments relate to a method of manufacturing a semiconductor device. Other example embodiments relate to a method of manufacturing a metal-oxide-semiconductor (MOS) transistor having an epitaxial region disposed in a lower portion of sidewalls of a gate pattern. Provided is a method of manufacturing a MOS transistor having an epitaxial region which improves an epitaxial growth rate and which may have fewer defects.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: November 3, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tetsuji Ueno, Hwa-Sung Rhee, Ho Lee
  • Patent number: 7611973
    Abstract: In methods of selectively forming an epitaxial semiconductor layer on a single crystalline semiconductor and semiconductor devices fabricated using the same, a single crystalline epitaxial semiconductor layer and a non-single crystalline epitaxial semiconductor layer are formed on a single crystalline semiconductor and a non-single crystalline semiconductor pattern respectively, using a main semiconductor source gas and a main etching gas. The non-single crystalline epitaxial semiconductor layer is removed using a selective etching gas. The main gases and the selective etching gas are alternately and repeatedly supplied at least two times to selectively form an elevated single crystalline epitaxial semiconductor layer having a desired thickness only on the single crystalline semiconductor. The selective etching gas suppresses formation of an epitaxial semiconductor layer on the non-single crystalline semiconductor pattern.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: November 3, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Suk Shin, Hwa-Sung Rhee, Tetsuji Ueno, Ho Lee, Seung-Hwan Lee
  • Publication number: 20090258463
    Abstract: Methods of fabricating semiconductor integrated circuit devices are provided. A substrate is provided with gate patterns formed on first and second regions. Spaces between gate patterns on the first region are narrower than spaces between gate patterns on the second region. Source/drain trenches are formed in the substrate on opposite sides of the gate patterns on the first and second regions. A first silicon-germanium (SiGe) epitaxial layer is formed that partially fills the source/drain trenches using a first silicon source gas. A second SiGe epitaxial layer is formed directly on the first SiGe epitaxial layer to further fill the source/drain trenches using a second silicon source gas that is different from the first silicon source gas.
    Type: Application
    Filed: April 7, 2009
    Publication date: October 15, 2009
    Inventors: Myung-Sun Kim, Hwa-Sung Rhee, Ho Lee, Ji-Hye Yi
  • Patent number: 7601983
    Abstract: A transistor includes a semiconductor substrate that has a first surface of a {100} crystal plane, a second surface of the {100} crystal plane having a height lower than that of the first surface, and a third surface of a {111} crystal plane connecting the first surface to the second surface. First heavily doped impurity regions are formed under the second surface. A gate structure is formed on the first surface. An epitaxial layer is formed on the second surface and the third surface. Second heavily doped impurity regions are formed at both sides of the gate structure. The second heavily doped impurity regions have side faces of the {111} crystal plane so that a short channel effect generated between the impurity regions may be prevented.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: October 13, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tetsuji Ueno, Hwa-Sung Rhee, Ho Lee, Dong-Suk Shin, Seung-Hwan Lee
  • Patent number: 7582535
    Abstract: Methods of fabricating a MOS transistor having a fully silicided metal gate electrode are provided. The method includes forming an isolation layer in a predetermined region of a semiconductor substrate to define an active region. An insulated gate pattern which crosses over the active region is formed. A spacer is formed on sidewalls of the gate pattern. A selective epitaxial growth process is applied to form semiconductor layers on the gate pattern and on the active region at both sides of the gate pattern. In this case, a poly-crystalline semiconductor layer is formed on the gate pattern while single-crystalline semiconductor layers are concurrently formed on the active region at both sides of the gate pattern. The semiconductor layers are selectively etched to form a gate-reduced pattern and elevated source and drain regions.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: September 1, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Hwan Lee, Dong-Suk Shin, Hwa-Sung Rhee, Tetsuji Ueno, Ho Lee
  • Patent number: 7576395
    Abstract: Integrated circuit devices include a semiconductor substrate having a first doped region and a second doped region having a different doping type than the first doped region. A gate electrode structure on the semiconductor substrate extends between the first and second doped regions and has a gate insulation layer of a first high dielectric constant material in the first doped region and of a second high dielectric constant material, different from the first high dielectric constant material, in the second doped region. A gate electrode is on the gate insulation layer.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: August 18, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyung-Suk Jung, Jong-Ho Lee, Hwa-Sung Rhee, Jae-Kwang Choi
  • Publication number: 20090170254
    Abstract: In a method of manufacturing a semiconductor device, a first gate electrode and a second gate electrode are formed in a first area and a second area of a substrate. Non-crystalline regions are formed in the first area of the substrate adjacent the first gate electrode. A layer having a first stress is formed on the substrate and the first and the second gate electrodes. A mask is formed on a first portion of the layer in the first area of the substrate to expose a second portion of the layer in the second area. The second portion is etched to form a sacrificial spacer on a sidewall of the second gate electrode. The second area of the substrate is partially etched using the mask, the second gate electrode and the sacrificial spacer, to form recesses in the second area of the substrate adjacent the second gate electrode. Patterns having a second stress are formed in the recesses.
    Type: Application
    Filed: December 23, 2008
    Publication date: July 2, 2009
    Inventors: Hwa-Sung Rhee, Ho Lee, Myung-Sun Kim, Ji-Hye Yi
  • Publication number: 20090146183
    Abstract: Example embodiments relate to a method of forming a germanium (Ge) silicide layer, a semiconductor device including the Ge silicide layer, and a method of manufacturing the semiconductor device. A method of forming a Ge silicide layer according to example embodiments may include forming a metal layer including vanadium (V) on a silicon germanium (SiGe) layer. The metal layer may have a multiple-layer structure and may further include at least one of platinum (Pt) and nickel (Ni). The metal layer may be annealed to form the germanium silicide layer. The annealing may be performed using a laser spike annealing (LSA) method.
    Type: Application
    Filed: April 4, 2008
    Publication date: June 11, 2009
    Inventors: Chang-wook Moon, Hyun-deok Yang, Joong S. Jeon, Hwa-sung Rhee, Nae-in Lee, Weiwei Chen
  • Publication number: 20090096037
    Abstract: A semiconductor device including an active region formed on a semiconductor substrate, and a field region adjacent to the active region, which is able to increase a width of the active region through use of a field recess portion at one surface side of the field region. The field recess portion may be laterally adjacent to a portion of the active region, thereby resulting in an increase of a width of the active region. A gate insulating film and a gate electrode may be formed on the field region and the active region, the gate insulating film and the gate electrode being formed in the field recess portion. The width of the active region may be a channel width.
    Type: Application
    Filed: October 9, 2008
    Publication date: April 16, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ji-Hye YI, Hwa-Sung RHEE, Ho LEE, Myung-Sun KIM
  • Publication number: 20090085125
    Abstract: Provided are a metal oxide semiconductor (MOS) transistor and a complementary MOS (CMOS) transistor each having a strained channel epi layer, and methods of fabricating the transistors. The MOS transistor may include at least one active region defined by an isolation structure formed in a substrate. At least one channel trench may be formed in a part of the at least one active region. At least one strained channel epi layer may be in the at least one channel trench. At least one gate electrode may be aligned on the at least one strained channel epi layer. Sources/drains may be arranged in the at least one active region along both sides of the at least one strained channel epi layer.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 2, 2009
    Inventors: Ki-Chul Kim, Hong-jae Shin, Moon-han Park, Hwa-sung Rhee, Jung-deog Lee
  • Publication number: 20090020820
    Abstract: In one aspect, a method of fabricating a semiconductor device is provided. The method includes forming at least one capping layer over epitaxial source/drain regions of a PMOS device, forming a stress memorization (SM) layer over the PMOS device including the at least one capping layer and over an adjacent NMOS device, and treating the SM layer formed over the NMOS and PMOS devices to induce tensile stress in a channel region of the NMOS device.
    Type: Application
    Filed: June 13, 2008
    Publication date: January 22, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hion-suck BAIK, Jong-bong PARK, Jung-yun WON, Hwa-sung RHEE, Byung-seo KIM, Ho LEE, Myung-sun KIM, Ji-hye YI
  • Publication number: 20080272366
    Abstract: A field effect transistor having at least one Ge nanorod and a method of manufacturing the field effect transistor are provided. The field effect transistor may include a gate oxide layer formed on a silicon substrate, at least one nanorod embedded in the gate oxide layer having both ends thereof exposed, a source electrode and a drain electrode connected to opposite sides of the at least one Ge nanorod, and a gate electrode formed on the gate oxide layer between the source electrode and the drain electrode.
    Type: Application
    Filed: January 30, 2008
    Publication date: November 6, 2008
    Inventors: Chang-wook Moon, Joong S. Jeon, Jung-hyun Lee, Nae-in Lee, Yeon-sik Park, Hwa-sung Rhee, Ho Lee, Se-young Cho, Suk-pil Kim
  • Patent number: 7439596
    Abstract: The present invention discloses a transistor for a semiconductor device capable of preventing the generation of a depletion capacitance in a gate pattern due to the diffusion of impurity ions. The present invention also discloses a method of fabricating the transistor.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: October 21, 2008
    Assignee: Samsung Electronics Co, Ltd.
    Inventors: Jae-Yoon Yoo, Hwa-Sung Rhee, Tetsuji Ueno, Ho Lee, Seung-Hwan Lee, Hyun-Suk Kim, Moon-Han Park
  • Publication number: 20080242010
    Abstract: An at least penta-sided-channel type of FinFET transistor may include: a base; a semiconductor body formed on the base, the body being arranged in a long dimension to have source/drain regions sandwiching a channel region, at least the channel, in cross-section transverse to the long dimension, having at least five planar surfaces above the base; a gate insulator on the channel region of the body; and a gate electrode formed on the gate insulator.
    Type: Application
    Filed: April 30, 2008
    Publication date: October 2, 2008
    Inventors: Hwa-Sung Rhee, Hyun-Suk Kim, Ueno Tetsuji, Jae-Yoon Yoo, Seung-Hwan Lee, Ho Lee, Moon-han Park
  • Publication number: 20080135879
    Abstract: In a method of fabricating a CMOS transistor, and a CMOS transistor fabricated according to the method, the characteristics of first and second conductivity type MOS transistors are both simultaneously improved. At the same time, the fabrication process is simplified by reducing the number of masks required. The method includes amorphizing the active region of only the second conductivity type MOS transistor, and performing selective etching to form a first recessed region of a first depth in the active region of the first conductivity type MOS transistor and a second recessed region of a second depth that is greater than the first depth in the active region of the second conductivity type MOS transistor.
    Type: Application
    Filed: February 12, 2008
    Publication date: June 12, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong-suk Shin, Hwa-sung Rhee, Ueno Tetsuji, Ho Lee, Seung-hwan Lee
  • Patent number: 7385247
    Abstract: An at least penta-sided-channel type of FinFET transistor may include: a base; a semiconductor body formed on the base, the body being arranged in a long dimension to have source/drain regions sandwiching a channel region, at least the channel, in cross-section transverse to the long dimension, having at least five planar surfaces above the base; a gate insulator on the channel region of the body; and a gate electrode formed on the gate insulator.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: June 10, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hwa-Sung Rhee, Hyun-Suk Kim, Ueno Tetsuji, Jae-Yoon Yoo, Seung-Hwan Lee, Ho Lee, Moon-han Park
  • Publication number: 20080121992
    Abstract: A semiconductor device includes a substrate having an n-type transistor region and a p-type transistor region. The n-type transistor region includes a first gate electrode, first source/drain regions located adjacent to the first gate electrode, a first channel region located between the first source/drain regions, and a first diffusion barrier region located in the first source/drain regions or in both the first channel region and the first source/drain regions. The p-type transistor region includes a second gate electrode, second source/drain regions located adjacent to the second gate electrode, a second channel region located between the second source/drain regions, and a second diffusion barrier region located in the second source/drain regions or in both the second channel region and the second source/drain regions.
    Type: Application
    Filed: August 8, 2007
    Publication date: May 29, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ji-hye YI, Hwa-sung RHEE, Tetsuji UENO, Ho LEE, Myung-sun KIM
  • Patent number: 7368792
    Abstract: In a metal-oxide semiconductor (MOS) transistor with an elevated source/drain structure and in a method of fabricating the MOS transistor with the elevated source/drain structure using a selective epitaxy growth (SEG) process, a source/drain extension junction is formed after an epi-layer is formed, thereby preventing degradation of the source/drain junction region. In addition, the source/drain extension junction is partially overlapped by a lower portion of the gate layer, since two gate spacers are formed and two elevated source/drain layers are formed in accordance with the SEG process. This mitigates the short channel effect and reduces sheet resistance in the source/drain layers and the gate layer.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: May 6, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-hwan Lee, Moon-han Park, Hwa-sung Rhee, Ho Lee, Jae-yoon Yoo
  • Patent number: 7365010
    Abstract: Methods of fabricating semiconductor devices having a carbon-containing metal silicide layer and semiconductor devices fabricated by the methods are provided. A representative method includes the steps of preparing a semiconductor substrate and forming a gate electrode and source/drain regions on the semiconductor substrate, such that the gate electrode has a first metal silicide layer on an upper part thereof which contains carbon and the source/drain regions have second metal silicide layers on their substantially carbon-free upper parts.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: April 29, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hwa-sung Rhee, Hion-suck Baik, Dong-suk Shin, Tetsuji Ueno, Seung-hwan Lee, Ho Lee
  • Patent number: 7361563
    Abstract: Methods of fabricating a semiconductor device using a selective epitaxial growth technique include forming a recess in a semiconductor substrate. The substrate having the recess is loaded into a reaction chamber. A semiconductor source gas and a main etching gas are injected into the reaction chamber to selectively grow an epitaxial semiconductor layer on a sidewall and on a bottom surface of the recess. A selective etching gas is injected into the reaction chamber to selectively etch a fence of the epitaxial semiconductor layer which is adjacent to the sidewall of the recess and grown to a level that is higher than an upper surface of the semiconductor substrate.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: April 22, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Suk Shin, Hwa-Sung Rhee, Tetsuji Ueno, Ho Lee, Seung-Hwan Lee