Patents by Inventor Hyon-Jong Cho

Hyon-Jong Cho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8753445
    Abstract: The invention relates to an apparatus and method for growing a high quality Si single crystal ingot and a Si single crystal ingot and wafer produced thereby. The growth apparatus controls the oxygen concentration of the Si single crystal ingot to various values thereby producing the Si single crystal ingot with high productivity and extremely controlled growth defects.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: June 17, 2014
    Assignee: Siltron, Inc.
    Inventor: Hyon-Jong Cho
  • Patent number: 8574362
    Abstract: The present invention relates to a method for manufacturing an ultra low defect semiconductor single crystalline ingot, which uses a Czochralski process for growing a semiconductor single crystalline ingot through a solid-liquid interface by dipping a seed into a semiconductor melt received in a quartz crucible and slowly pulling up the seed while rotating the seed, wherein a defect-free margin is controlled by increasing or decreasing a heat space on a surface of the semiconductor melt according to change in length of the single crystalline ingot as progress of the single crystalline ingot growth process.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: November 5, 2013
    Assignee: Siltron, Inc.
    Inventors: Young-Ho Hong, Hyon-Jong Cho, Sung-Young Lee, Seung-Ho Shin, Hong-Woo Lee
  • Patent number: 8216372
    Abstract: The invention relates to an apparatus and method for growing a high quality Si single crystal ingot and a Si single crystal ingot and wafer produced thereby. The growth apparatus controls the oxygen concentration of the Si single crystal ingot to various values thereby producing the Si single crystal ingot with high productivity and extremely controlled growth defects.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: July 10, 2012
    Assignee: Siltron Inc.
    Inventor: Hyon-Jong Cho
  • Patent number: 8114216
    Abstract: The present invention relates to a semiconductor single crystal growth method, which uses a Czochralski process for growing a semiconductor single crystal through a solid-liquid interface by dipping a seed into a semiconductor melt received in a quartz crucible and pulling up the seed while rotating the quartz crucible and applying a strong horizontal magnetic field, wherein the seed is pulled up while the quartz crucible is rotated with a rate between 0.6 rpm and 1.5 rpm.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: February 14, 2012
    Assignee: Siltron, Inc.
    Inventors: Hyon-Jong Cho, Seung-Ho Shin, Ji-Hun Moon, Hong-Woo Lee, Young-Ho Hong
  • Publication number: 20110197809
    Abstract: Provided are a single crystal cooler and a single crystal grower including the same. The single crystal cooler includes a cooling main body and a passage. The passage is formed on an inner wall and an outer wall of the cooling main body. The passage allows cooling materials to move therethrough. The single crystal cooler has a cylindrical shape. A first inner diameter R1 of the single crystal cooler is about 1.5 times or more greater than an inner diameter R2 of a single crystal grown by applying the single crystal cooler.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 18, 2011
    Inventors: Hyon-Jong Cho, Hong Woo Lee, Min-Seok Kwak, Ji-Hun Moon
  • Patent number: 7799130
    Abstract: A silicon single crystal ingot growing apparatus for growing a silicon single crystal ingot based on a Czochralski method The silicon single crystal ingot growing apparatus includes a chamber; a crucible provided in the chamber, and for containing a silicon melt; a heater provided at the outside of the crucible and for heating the silicon melt; a pulling unit for ascending a silicon single crystal grown from the silicon melt; and a plurality of magnetic members provided at the outside of the chamber and for asymmetrically applying a magnetic field to the silicon melt Such a structure can uniformly controls an oxygen concentration at a rear portion of a silicon single crystal ingot using asymmetric upper/lower magnetic fields without replacing a hot zone In addition, such a structure can controls a flower phenomenon generated on the growth of the single crystal by the asymmetric magnetic fields without a loss such as the additional hot zone (H/Z) replacement, P/S down, and SR variance.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: September 21, 2010
    Assignee: Siltron, Inc.
    Inventors: Young Ho Hong, Man Seok Kwak, Ill-Soo Choi, Hyon-Jong Cho, Hong Woo Lee
  • Publication number: 20100158781
    Abstract: The invention relates to a technique for producing a high quality Si single crystal ingot with a high productivity by the Czochralski method. The technique of the invention can control the magnetic field strength of an oxygen dissolution region different from that of a solid-liquid interface region in order to control the oxygen concentration at a desired value.
    Type: Application
    Filed: February 24, 2009
    Publication date: June 24, 2010
    Applicant: SILTRON INC.
    Inventor: Hyon-Jong Cho
  • Publication number: 20100040525
    Abstract: Disclosed is a method of fabrication of high quality silicon single crystal at high growth rate. The method grows silicon single crystal from silicon melt by Czochralski method, wherein the silicon single crystal is grown according to conditions that the silicon melt has an axial temperature gradient determined according to an equation, {(?Tmax??Tmin)/?Tmin}×100?10, wherein ?Tmax is a maximum axial temperature gradient of the silicon melt and ?Tmin is a minimum axial temperature gradient of the silicon melt, when the axial temperature gradient is measured along an axis parallel to a radial direction of the silicon single crystal.
    Type: Application
    Filed: February 11, 2009
    Publication date: February 18, 2010
    Applicant: SILITRON INC.
    Inventor: Hyon-Jong Cho
  • Publication number: 20090272948
    Abstract: Disclosed is a method of growing a single crystal from a melt contained in a crucible. The method includes the step of making the temperature of a melt increase gradually to a maximum point and then decrease gradually along the axis parallel to the lengthwise direction of the single crystal from the interface of the single crystal and the melt to the bottom of the crucible. The increasing temperature of the melt is kept to preferably have a greater temperature gradient than the decreasing temperature thereof. Preferably, the axis is set to pass through the center of the single crystal. Preferably, the convection of the inner region of the melt is made smaller than that of the outer region thereof.
    Type: Application
    Filed: July 2, 2008
    Publication date: November 5, 2009
    Applicant: Siltron Inc.
    Inventor: Hyon-Jong CHO
  • Patent number: 7608145
    Abstract: Disclosed is a method of fabrication of high quality silicon single crystal at high growth rate. The method grows silicon single crystal from silicon melt by Czochralski method, wherein the silicon single crystal is grown according to conditions that the silicon melt has an axial temperature gradient determined according to an equation, {(?Tmax??Tmin)/?Tmin}×100?10, wherein ?Tmax is a maximum axial temperature gradient of the silicon melt and ?Tmin is a minimum axial temperature gradient of the silicon melt, when the axial temperature gradient is measured along an axis parallel to a radial direction of the silicon single crystal.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: October 27, 2009
    Assignee: Siltron Inc.
    Inventor: Hyon-Jong Cho
  • Publication number: 20090183670
    Abstract: The present invention relates to an apparatus for manufacturing a high-quality semiconductor single crystal ingot and a method using the same. The apparatus of the present invention includes a quartz crucible, a heater installed around a side wall of the quartz crucible, a single crystal pulling means for pulling a single crystal from the semiconductor melt received in the quartz crucible, and a magnetic field applying means for forming a Maximum Gauss Plane (MGP) at a location of ML-1000 mm to ML-350 mm based on a Melt Level (ML) of the melt surface, and applying a strong magnetic field of 3000 to 5500 Gauss to an intersection between the MGP and the side wall of the quartz crucible and a weak magnetic field of 1500 to 3000 Gauss below a solid-liquid interface.
    Type: Application
    Filed: January 20, 2009
    Publication date: July 23, 2009
    Applicant: SILTRON INC.
    Inventors: Hyon-Jong Cho, Young-Ho Hong, Hong-Woo Lee, Jong-Min Kang, Dae-Yeon Kim
  • Patent number: 7559988
    Abstract: The invention relates to a technique for producing a high quality Si single crystal ingot with a high productivity by the Czochralski method. The technique of the invention can control the magnetic field strength of an oxygen dissolution region different from that of a solid-liquid interface region in order to control the oxygen concentration at a desired value.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: July 14, 2009
    Assignee: Siltron Inc.
    Inventor: Hyon-Jong Cho
  • Publication number: 20090114147
    Abstract: The present invention relates to a semiconductor single crystal growth method, which uses a Czochralski process for growing a semiconductor single crystal through a solid-liquid interface by dipping a seed into a semiconductor melt received in a quartz crucible and pulling up the seed while rotating the quartz crucible and applying a strong horizontal magnetic field, wherein the seed is pulled up while the quartz crucible is rotated with a rate between 0.6 rpm and 1.5 rpm.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 7, 2009
    Applicant: SILTRON INC.
    Inventors: Hyon-Jong Cho, Seung-Ho Shin, Ji-Hun Moon, Hong-Woo Lee, Young-Ho Hong
  • Publication number: 20090090294
    Abstract: The present invention relates to a method for manufacturing an ultra low defect semiconductor single crystalline ingot, which uses a Czochralski process for growing a semiconductor single crystalline ingot through a solid-liquid interface by dipping a seed into a semiconductor melt received in a quartz crucible and slowly pulling up the seed while rotating the seed, wherein a defect-free margin is controlled by increasing or decreasing a heat space on a surface of the semiconductor melt according to change in length of the single crystalline ingot as progress of the single crystalline ingot growth process.
    Type: Application
    Filed: October 2, 2008
    Publication date: April 9, 2009
    Applicant: SILTRON INC.
    Inventors: Young-Ho Hong, Hyon-Jong Cho, Sung-Young Lee, Seung-Ho Shin, Hong-Woo Lee
  • Patent number: 7427325
    Abstract: In a method for producing a high quality silicon single crystal by the Czochralski method, a lower portion of a solid-liquid interface of a single crystal growth is divided into a central part and a circumferential part, and the temperature gradient of the central part and the temperature gradient of the circumferential part are separately controlled. When a silicon melt located at a lower portion of a solid-liquid interface of a single crystal growth is divided into a central part melt and a circumferential part melt, the method controls the temperature gradient of the central part melt by directly controlling the temperature distribution of a melt and indirectly controls the temperature gradient of the circumferential part melt by controlling the temperature gradient of the single crystal, thereby effectively controlling the overall temperature distribution of the melt, thus producing a high quality single crystal ingot free of defects with a high growth velocity.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: September 23, 2008
    Assignee: Siltron, Inc.
    Inventor: Hyon-Jong Cho
  • Patent number: 7416603
    Abstract: Disclosed is a method of growing a single crystal from a melt contained in a crucible. The method includes the step of making the temperature of a melt increase gradually to a maximum point and then decrease gradually along the axis parallel to the lengthwise direction of the single crystal from the interface of the single crystal and the melt to the bottom of the crucible. The increasing temperature of the melt is kept to preferably have a greater temperature gradient than the decreasing temperature thereof. Preferably, the axis is set to pass through the center of the single crystal. Preferably, the convection of the inner region of the melt is made smaller than that of the outer region thereof.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: August 26, 2008
    Assignee: Siltron Inc.
    Inventor: Hyon-Jong Cho
  • Patent number: 7378071
    Abstract: A method for growing a silicon single crystal ingot by a Czochralski method, which is capable of providing silicon wafers having very uniform in-plane quality and which results in improvement of semiconductor device yield. A method is provided for producing a silicon single crystal ingot by a Czochralski method, wherein when convection of a silicon melt is divided into a core cell and an outer cell, the silicon single crystal ingot is grown under the condition that the maximal horizontal direction width of the core cell is 30 to 60% of a surface radius of the silicon melt. In one embodiment the silicon single crystal ingot is grown under the condition that the maximal vertical direction depth of the core cell is equal to or more than 50% of the maximal depth of the silicon melt.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: May 27, 2008
    Assignee: Siltron Inc.
    Inventors: Hyon-Jong Cho, Cheol-Woo Lee, Hong-Woo Lee, Cheong Jin Soo, Kim Sunmi
  • Patent number: 7371283
    Abstract: Disclosed is a metod of fabrication of high quality silicon single crystal at high growth rate. The method grows silicon single crystal from silicon melt by Czochralski method, wherein the silicon single crystal is grown according to conditions that the silicon melt has an axial temperature gradient determined according to an equation, {(?Tmax??Tmin)/?Tmin}×100?10, wherein ?Tmax is a maximum axial temperature gradient of the silicon melt and ?Tmin is a minimum axial temperature gradient of the silicon melt, when the axial temperature gradient is measured along an axis parallel to a radial direction of the silicon single crystal.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: May 13, 2008
    Assignee: Siltron Inc.
    Inventor: Hyon-Jong Cho
  • Publication number: 20080053366
    Abstract: Disclosed is a method of fabrication of high quality silicon single crystal at high growth rate. The method grows silicon single crystal from silicon melt by Czochralski method, wherein the silicon single crystal is grown according to conditions that the silicon melt has an axial temperature gradient determined according to an equation, {(?Tmax??Tmin)/?Tmin}×100?10, wherein ?Tmax is a maximum axial temperature gradient of the silicon melt and ?Tmin is a minimum axial temperature gradient of the silicon melt, when the axial temperature gradient is measured along an axis parallel to a radial direction of the silicon single crystal.
    Type: Application
    Filed: July 5, 2007
    Publication date: March 6, 2008
    Applicant: SILTRON INC.
    Inventor: Hyon-Jong Cho
  • Publication number: 20080053365
    Abstract: Disclosed is a method of fabrication of high quality silicon single crystal at high growth rate. The method grows silicon single crystal from silicon melt by Czochralski method, wherein the silicon single crystal is grown according to conditions that the silicon melt has an axial temperature gradient determined according to an equation, {(?Tmax??Tmin)/?Tmin}×100?10, wherein ?Tmax is a maximum axial temperature gradient of the silicon melt and ?Tmin is a minimum axial temperature gradient of the silicon melt, when the axial temperature gradient is measured along an axis parallel to a radial direction of the silicon single crystal.
    Type: Application
    Filed: July 5, 2007
    Publication date: March 6, 2008
    Applicant: SILTRON INC.
    Inventor: Hyon-Jong Cho