Patents by Inventor I-Sheng Chen

I-Sheng Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240105778
    Abstract: A semiconductor device includes a fin extending from a substrate. The fin has a source/drain region and a channel region. The channel region includes a first semiconductor layer and a second semiconductor layer disposed over the first semiconductor layer and vertically separated from the first semiconductor layer by a spacing area. A high-k dielectric layer at least partially wraps around the first semiconductor layer and the second semiconductor layer. A metal layer is formed along opposing sidewalls of the high-k dielectric layer. The metal layer includes a first material. The spacing area is free of the first material.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 28, 2024
    Inventors: I-Sheng CHEN, Yee-Chia YEO, Chih Chieh YEH, Cheng-Hsien WU
  • Publication number: 20240106246
    Abstract: Disclosed is a power storage device and method for discharging the same, which configures the power storage device to perform an electric power output under a discharging limit upon coupling with a load device and before any authentication is conducted. The discharging limit for the electric power output will be lifted only when an authentication result between the power storage device and the load device indicates a successful authentication.
    Type: Application
    Filed: September 27, 2023
    Publication date: March 28, 2024
    Inventors: Wei-Tsung Huang, I-Sheng Chen, Liang-Yi Hsu
  • Patent number: 11942467
    Abstract: A semiconductor structure includes a first metal-dielectric-metal layer, a first dielectric layer, a first conductive layer, a second conductive layer, and a second dielectric layer. The first metal-dielectric-metal layer includes a plurality of first fingers, a plurality of second fingers, and a first dielectric material. The first fingers are electrically connected to a first voltage. The second fingers are electrically connected to a second voltage different from the first voltage, and the first fingers and the second fingers are arranged in parallel and staggeredly. The first dielectric material is between the first fingers and the second fingers. The first dielectric layer is over the first metal-dielectric-metal layer. The first conductive layer is over the first dielectric layer. The second conductive layer is over the first conductive layer. The second dielectric layer is between the first conductive layer and the second conductive layer.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: I-Sheng Chen, Yi-Jing Li, Chia-Ming Hsu, Wan-Lin Tsai, Clement Hsingjen Wann
  • Patent number: 11929561
    Abstract: An antenna module includes a first antenna radiator including a feeding terminal, a second antenna radiator, a first ground radiator, a second ground radiator and a capacitive element. The second antenna radiator is disposed on one side of the first antenna radiator, and a first gap is formed between a main portion of the second antenna radiator and the first antenna radiator. The first ground radiator is disposed on another side of the first antenna radiator, and a second gap is formed between the first antenna radiator and the first antenna radiator. The second ground radiator is disposed between the second antenna radiator and the first ground radiator, and a third gap is formed between the second ground radiator and a first branch of the second antenna radiator. The capacitive element is disposed on the third gap and connects the second antenna radiator and the second ground radiator.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: March 12, 2024
    Assignee: PEGATRON CORPORATION
    Inventors: I-Shu Lee, Chih-Hung Cho, Hau Yuen Tan, Chien-Yi Wu, Po-Sheng Chen, Chao-Hsu Wu, Yi Chen, Hung-Ming Yu, Chih-Chien Hsieh
  • Patent number: 11921372
    Abstract: A display device including a first light emitting unit, a second light emitting unit, a first optical layer and a second optical layer is disclosed. The first optical layer is disposed on at least one of the first light emitting unit and the second light emitting unit, and the first optical layer includes a collimating layer. The second optical layer is disposed on the first light emitting unit. The second optical layer is configured to scatter a first light emitted from the first light emitting unit but does not scatter a second light emitted from the second light emitting unit.
    Type: Grant
    Filed: February 14, 2023
    Date of Patent: March 5, 2024
    Assignee: InnoLux Corporation
    Inventors: Kuei-Sheng Chang, Kuo-Jung Wu, Po-Yang Chen, I-An Yao
  • Patent number: 11923252
    Abstract: A semiconductor device includes a first set of nanostructures stacked over a substrate in a vertical direction, and each of the first set of nanostructures includes a first end portion and a second end portion, and a first middle portion laterally between the first end portion and the second end portion. The first end portion and the second end portion are thicker than the first middle portion. The semiconductor device also includes a first plurality of semiconductor capping layers around the first middle portions of the first set of nanostructures, and a gate structure around the first plurality of semiconductor capping layers.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Sai-Hooi Yeong, Bo-Feng Young, Chi-On Chui, Chih-Chieh Yeh, Cheng-Hsien Wu, Chih-Sheng Chang, Tzu-Chiang Chen, I-Sheng Chen
  • Patent number: 11923413
    Abstract: Semiconductor structures are provided. The semiconductor structure includes a substrate and nanostructures formed over the substrate. The semiconductor structure further includes a gate structure surrounding the nanostructures and a source/drain structure attached to the nanostructures. The semiconductor structure further includes a contact formed over the source/drain structure and extending into the source/drain structure.
    Type: Grant
    Filed: February 7, 2022
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ta-Chun Lin, Kuo-Hua Pan, Jhon-Jhy Liaw, Chao-Ching Cheng, Hung-Li Chiang, Shih-Syuan Huang, Tzu-Chiang Chen, I-Sheng Chen, Sai-Hooi Yeong
  • Publication number: 20240071834
    Abstract: A method of manufacturing a semiconductor device includes forming a plurality of fin structures extending in a first direction over a semiconductor substrate. Each fin structure includes a first region proximate to the semiconductor substrate and a second region distal to the semiconductor substrate. An electrically conductive layer is formed between the first regions of a first adjacent pair of fin structures. A gate electrode structure is formed extending in a second direction substantially perpendicular to the first direction over the fin structure second region, and a metallization layer including at least one conductive line is formed over the gate electrode structure.
    Type: Application
    Filed: November 7, 2023
    Publication date: February 29, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Li CHIANG, Chih-Liang CHEN, Tzu-Chiang CHEN, I-Sheng CHEN, Lei-Chun CHOU
  • Publication number: 20240069878
    Abstract: Aspects of the present disclosure provide a method for training a predictor that predicts performance of a plurality of machine learning (ML) models on platforms. For example, the method can include converting each of the ML models into a plurality of instructions or the instructions and a plurality of intermediate representations (IRs). The method can also include simulating execution of the instructions corresponding to each of the ML models on a platform and generating instruction performance reports. Each of the instruction performance reports can be associated with performance of the instructions corresponding to one of the ML models that are executed on the platform. The method can also include training the predictor with the instructions or the IRs as learning features and the instruction performance reports as learning labels, compiling the predictor into a library file, and storing the library file in a storage device.
    Type: Application
    Filed: July 3, 2023
    Publication date: February 29, 2024
    Applicant: MEDIATEK INC.
    Inventors: Huai-Ting LI, I-Lin CHEN, Tsai JEN CHIEH, Cheng-Sheng CHAN, ShengJe HUNG, Yi-Min TSAI, Huang YA-LIN
  • Patent number: 11908749
    Abstract: A method includes: providing a first gate electrode over the substrate; forming a first pair of spacers on two sides of the first gate electrode; removing the first gate electrode to form a first trench between the first pair of spacers; depositing a dielectric layer in the first trench; depositing a first layer over the dielectric layer; removing the first layer from the first trench; and depositing a work function layer over the dielectric layer in the first trench.
    Type: Grant
    Filed: November 21, 2022
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yi-Jing Lee, Ya-Yun Cheng, Hau-Yu Lin, I-Sheng Chen, Chia-Ming Hsu, Chih-Hsin Ko, Clement Hsingjen Wann
  • Publication number: 20240047526
    Abstract: Semiconductor structures and method for forming the same are provided. The semiconductor structure includes a substrate and nanostructures formed over the substrate and spaced apart from each other in a first direction. The semiconductor structure further includes a gate structure wrapping around the nanostructures and a semiconductor layer attached to the nanostructures in a second direction different from the first direction. The semiconductor structure further includes inner spacers sandwiched between the semiconductor layer and the gate structure in the second direction and a silicide layer formed over the semiconductor layer. In addition, a first portion of the semiconductor layer is sandwiched between the inner spacers and the silicide layer in the second direction.
    Type: Application
    Filed: October 16, 2023
    Publication date: February 8, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Ching CHENG, I-Sheng CHEN, Tzu-Chiang CHEN, Shih-Syuan HUANG, Hung-Li CHIANG
  • Patent number: 11894438
    Abstract: A semiconductor device includes a field effect transistor (FET). The FET includes a first channel, a first source and a first drain; a second channel, a second source and a second drain; and a gate structure disposed over the first and second channels. The gate structure includes a gate dielectric layer and a gate electrode layer. The first source includes a first crystal semiconductor layer and the second source includes a second crystal semiconductor layer. The first source and the second source are connected by an alloy layer made of one or more Group IV element and one or more transition metal elements. The first crystal semiconductor layer is not in direct contact with the second crystal semiconductor layer.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: February 6, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yee-Chia Yeo, Sung-Li Wang, Chi On Chui, Jyh-Cherng Sheu, Hung-Li Chiang, I-Sheng Chen
  • Patent number: 11862732
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The method includes providing a substrate having a first fin, and the first fin has a channel region and a source/drain region. The method includes forming a stack structure over the first fin, and the stack structure includes a first semiconductor layer and a second semiconductor layer vertically stacked over the fin. The method also includes removing a portion of the second semiconductor layer in the channel region, and a portion of the first semiconductor layer is remaining in the channel region. The method further includes forming a cladding layer over the remaining first semiconductor material layer in the channel region to form a nanostructure, wherein the nanostructure has a dumbbell shape. The method includes forming a gate structure surrounding the nanostructure.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: January 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wilman Tsai, Cheng-Hsien Wu, I-Sheng Chen, Stefan Rusu
  • Patent number: 11855151
    Abstract: A semiconductor device includes a fin extending from a substrate. The fin has a source/drain region and a channel region. The channel region includes a first semiconductor layer and a second semiconductor layer disposed over the first semiconductor layer and vertically separated from the first semiconductor layer by a spacing area. A high-k dielectric layer at least partially wraps around the first semiconductor layer and the second semiconductor layer. A metal layer is formed along opposing sidewalls of the high-k dielectric layer. The metal layer includes a first material. The spacing area is free of the first material.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: I-Sheng Chen, Cheng-Hsien Wu, Chih Chieh Yeh, Yee-Chia Yeo
  • Publication number: 20230412477
    Abstract: A data storage method and system, applied in a network system of distributed ledger technology. The method comprises: storing, by a first node, data of information units of the network system; determining, by a second node, a designated origin signal including an identifier of at least one origin information unit; obtaining, by the second node, data of the information units of the network system from the first node; determining, by the second node, a designated destination signal including an identifier of a destination information unit; determining, by the second node, a shortest path data from the origin information unit to the destination information unit according to the designated origin signal, the data of the information units of the network system, and the designated destination signal; and storing, by the second node, data of all information units included in the shortest path data.
    Type: Application
    Filed: June 16, 2022
    Publication date: December 21, 2023
    Inventors: Chu George Kai, I-Sheng Chen
  • Patent number: 11848242
    Abstract: A method of manufacturing a semiconductor device includes forming a plurality of fin structures extending in a first direction over a semiconductor substrate. Each fin structure includes a first region proximate to the semiconductor substrate and a second region distal to the semiconductor substrate. An electrically conductive layer is formed between the first regions of a first adjacent pair of fin structures. A gate electrode structure is formed extending in a second direction substantially perpendicular to the first direction over the fin structure second region, and a metallization layer including at least one conductive line is formed over the gate electrode structure.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: December 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hung-Li Chiang, Chih-Liang Chen, Tzu-Chiang Chen, I-Sheng Chen, Lei-Chun Chou
  • Publication number: 20230377984
    Abstract: In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers containing Ge and second semiconductor layers are alternately stacked, is formed over a bottom fin structure. A Ge concentration in the first semiconductor layers is increased. A sacrificial gate structure is formed over the fin structure. A source/drain epitaxial layer is formed over a source/drain region of the fin structure. The sacrificial gate structure is removed. The second semiconductor layers in a channel region are removed, thereby releasing the first semiconductor layers in which the Ge concentration is increased. A gate structure is formed around the first semiconductor layers in which the Ge concentration is increased.
    Type: Application
    Filed: August 7, 2023
    Publication date: November 23, 2023
    Inventors: Chao-Ching CHENG, I-Sheng CHEN, Hung-Li CHIANG, Tzu-Chiang CHEN
  • Patent number: 11823957
    Abstract: In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers containing Ge and second semiconductor layers are alternately stacked, is formed over a bottom fin structure. A Ge concentration in the first semiconductor layers is increased. A sacrificial gate structure is formed over the fin structure. A source/drain epitaxial layer is formed over a source/drain region of the fin structure. The sacrificial gate structure is removed. The second semiconductor layers in a channel region are removed, thereby releasing the first semiconductor layers in which the Ge concentration is increased. A gate structure is formed around the first semiconductor layers in which the Ge concentration is increased.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chao-Ching Cheng, I-Sheng Chen, Hung-Li Chiang, Tzu-Chiang Chen
  • Patent number: 11824088
    Abstract: Semiconductor structures and method for forming the same are provided. The semiconductor structure includes a substrate and first nanostructures and second nanostructures formed over the substrate. The semiconductor structure further includes a first source/drain structure formed adjacent to the first nanostructures and a second source/drain structure formed adjacent to the second nanostructures. The semiconductor structure further includes a first contact plug formed over the first source/drain structure and a second contact plug formed over the second source/drain structure. In addition, a bottom portion of the first contact plug is lower than a bottom portion of the first nanostructures, and a bottom portion of the second contact plug is higher than a top portion of the second nanostructures.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: November 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Ching Cheng, I-Sheng Chen, Tzu-Chiang Chen, Shih-Syuan Huang, Hung-Li Chiang
  • Publication number: 20230343876
    Abstract: A nanowire FET device includes a vertical stack of nanowire strips configured as the semiconductor body. One or more of the top nanowire strips are receded and are shorter than the rest of the nanowire strips stacked lower. Inner spacers are uniformly formed adjacent to the receded nanowire strips and the rest of the nanowire strips. Source/drain structures are formed outside the inner spacers and a gate structure is formed inside the inner spacers, which wraps around the nanowire strips.
    Type: Application
    Filed: June 12, 2023
    Publication date: October 26, 2023
    Inventors: I-Sheng Chen, Chao-Ching Cheng, Tzu-Chiang Chen, Carlos H Diaz