Patents by Inventor Ian Harding

Ian Harding has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8617365
    Abstract: An electrochemical test device is provided having a base layer with a first electrode thereon and a top layer with a second electrode thereon. The two electrodes are separated by a spacer layer having an opening therein, such that a sample-receiving space is defined with one electrode on the top surface, the other electrodes on the bottom surface and side walls formed from edges of the opening in the spacer. Reagents for performing the electrochemical reaction are deposited on one of the electrodes and on the side walls of the sample-receiving space.
    Type: Grant
    Filed: May 21, 2005
    Date of Patent: December 31, 2013
    Assignee: AgaMatrix, Inc.
    Inventor: Ian Harding
  • Patent number: 8597590
    Abstract: Systems and methods for multiple analyte detection include a system for distribution of a biological sample that includes a substrate, wherein the substrate includes a plurality of sample chambers, a sample introduction channel for each sample chamber, and a venting channel for each sample chamber. The system may further include a preloaded reagent contained in each sample chamber and configured for nucleic acid analysis of a biological sample that enters the substrate and a sealing instrument configured to be placed in contact with the substrate to seal each sample chamber so as to substantially prevent sample contained in each sample chamber from flowing out of each sample chamber. The substrate can be constructed of detection-compatible and assay-compatible materials.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: December 3, 2013
    Assignee: Applied Biosystems, LLC
    Inventors: Min Yue, David M. Liu, Joy Roy, Yuh-Min Chiang, Joon Mo Yang, Dennis Lehto, Charles S. Vann, Nigel P. Beard, Ian A. Harding, John R. Van Camp, Alexander Dromaretsky, Sergey V. Ermakov, Mark F. Oldham, Maryam Shariati, Umberto Ulmanella
  • Patent number: 8591815
    Abstract: The ability to switch at will between amperometric measurements and potentiometric measurements provides great flexibility in performing analysis of unknowns. Apparatus and methods can provide such switching to collect data from an electrochemical cell. The cell may contain a reagent disposed to measure glucose in human blood.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: November 26, 2013
    Assignee: AgaMatrix, Inc.
    Inventors: Ian Harding, Sridhar G. Iyengar, Baoguo Wei, Steven Diamond, Martin Forest
  • Patent number: 8591722
    Abstract: A method is provided for determining analyte concentrations, for example glucose concentrations, that utilizes a dynamic determination of the appropriate time for making a glucose measurement, for example when a current versus time curve substantially conforms to a Cottrell decay, or when the current is established in a plateau region. Dynamic determination of the time to take the measurement allows each strip to operate in the shortest appropriate time frame, thereby avoiding using an average measurement time that may be longer than necessary for some strips and too short for others.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: November 26, 2013
    Assignee: AgaMatrix, Inc.
    Inventors: Steven Diamond, Ian Harding, Sridhar G. Iyengar, Baoguo Wei
  • Publication number: 20130266489
    Abstract: A diagnostic test strip vial has a container, a lid, and a plurality of diagnostic test strips. The container has a generally annular wall that terminates at a base and at an open mouth at an end that is opposite the base. The annular wall is cut at an oblique angle creating a wall that has a high side and a low side at the open mouth. The low side of the annular wall of the container is shorter in length than a diagnostic test strip that enclosed in the vial when the lid is closed with the container.
    Type: Application
    Filed: April 1, 2013
    Publication date: October 10, 2013
    Inventors: Brad Boozer, Joseph Flaherty, Timothy Golnik, Ian Harding, Sridhar G. Iyengar
  • Patent number: 8512546
    Abstract: The presence of a select analyte such as glucose in the sample is evaluated in an electrochemical system using a conduction cell-type apparatus. A potential or current is generated between the two electrodes of the cell sufficient to bring about oxidation or reduction of the analyte or of a mediator in an analyte-detection redox system, thereby forming a chemical potential gradient of the analyte or mediator between the two electrodes after the gradient is established, the applied potential or current is discontinued and an analyte-independent signal is obtained from the relaxation of the chemical potential gradient. The analyte-independent signal is used to correct the analyte-dependent signal obtained during application of the potential or current.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: August 20, 2013
    Assignee: AgaMatrix, Inc.
    Inventors: Sridhar G. Iyengar, Ian Harding
  • Publication number: 20130146478
    Abstract: A test strip with an incorporated optical waveguide and deflectors punched through the optical waveguide allows light to exit through a layer of the test strip and be detected by a photo detector. Using light and a photodetector, these uniquely coded strips are identified. The waveguide can be constructed by sandwiching two layers of the test strip around a light transmissible layer. This configuration allows light to be transmitted through the test strip and out the other end, as well as allowing some light to escape the deflector. This light is detected by a photodetector mounted in the analyte test meter. The deflectors may be placed in patterns such that detection of this light indicates certain characteristics of the strip, such as non-counterfeit, regional identification, type of analyte tested, and coding information.
    Type: Application
    Filed: June 30, 2011
    Publication date: June 13, 2013
    Applicant: AgaMatrix, INC.
    Inventors: Sridhar Iyengar, Ian Harding, Charles Boiteau, Colin Butters
  • Publication number: 20130026050
    Abstract: A dry reagent composition that includes an active redox enzyme that oxidizes an analyte as a specific substrate to produce an inactive reduced form of the enzyme; and a salt of ferricyanide provides improved performance in electrochemical test strips such as those used for detection of glucose. The salt of ferricyanide consists of ferricyanide and positively-charged counter ions, and the positively charged counter ions are selected such that the salt of ferricyanide is soluble in water, and such that the salt of ferricyanide or the crystalline phase of the salt of ferricyanide has a solubility in water and/or a lower E0eff at a concentration of 100 mM than potassium ferricyanide. For example, the salt of ferricyanide may be tetramethylammonium ferricyanide.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 31, 2013
    Applicant: AGAMATRIX, INC.
    Inventors: Ian Harding, Mary Y. Lee, Sandie Tan
  • Patent number: 8361307
    Abstract: The presence of oxygen or red blood cells in a sample applied to an electrochemical test strip that makes use of a reduced mediator is corrected for by an additive correction factor that is determined as a function of the temperature of the sample and a measurement that reflects the oxygen carrying capacity of the sample. The measured oxygen carrying capacity can also be used to determine hematocrit and to distinguish between blood samples and control solutions applied to a test strip.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: January 29, 2013
    Assignee: AgaMatrix, Inc.
    Inventors: Ian Harding, Richard Williams, Sridhar Iyengar
  • Patent number: 8329025
    Abstract: The presence of oxygen or red blood cells in a sample applied to an electrochemical test strip that makes use of a reduced mediator is corrected for by an additive correction factor that is determined as a function of the temperature of the sample and a measurement that reflects the oxygen carrying capacity of the sample. The measured oxygen carrying capacity can also be used to determine hematocrit and to distinguish between blood samples and control solutions applied to a test strip.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: December 11, 2012
    Assignee: AgaMatrix, Inc.
    Inventors: Ian Harding, Richard Williams, Sridhar Iyengar
  • Publication number: 20120305396
    Abstract: Electrochemical test cells are made with precision and accuracy by adhering an electrically resistive sheet having a bound opening to a first electrically conductive sheet. A notching opening is then punched through the electrically resistive sheet and the first electrically conductive sheet. The notching opening intersects the first bound opening in the electrically resistive sheet, and transforms the first bound opening into a notch in the electrically resistive sheet. A second electrically conductive sheet is punched to have a notching opening corresponding to that of first electrically conductive sheet, and this is adhered to the other side of the electrically resistive sheet such that the notching openings are aligned. This structure is cleaved from surrounding material to form an electrochemical cell that has a sample space for receiving a sample defined by the first and second conductive sheets and the notch in the electrically resistive sheet.
    Type: Application
    Filed: August 14, 2012
    Publication date: December 6, 2012
    Applicant: AgaMatrix, Inc.
    Inventors: Ian Harding, Sridhar G. Iyengar, Marina T. Larson, Carl Oppedahl
  • Patent number: 8303787
    Abstract: Systems and methods are provided herein for improving the selectivity and productivity of sensors via digital signal processing techniques. According to one illustrative embodiment, in an electrochemical method for monitoring of a select analyte in a mixed sample with an interfering analyte, an improvement is provided that includes applying a large amplitude potential stimulus waveform to the sample to generate a nonlinear current signal; and resolving a signal contribution from the select analyte in the generated signal by a vector projection method with an analyte vector comprising a plurality of real and imaginary parts of one or more Fourier coefficients at one or more frequencies of a reference current signal for the select analyte.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: November 6, 2012
    Assignee: Agamatrix, Inc.
    Inventors: Sridhar G. Iyengar, Daniel Haas, Craig Bolon, Ian Harding
  • Patent number: 8268145
    Abstract: Electrochemical test cells are made with precision and accuracy by adhering an electrically resistive sheet having a bound opening to a first electrically conductive sheet. A notching opening is then punched through the electrically resistive sheet and the first electrically conductive sheet. The notching opening intersects the first bound opening in the electrically resistive sheet, and transforms the first bound opening into a notch in the electrically resistive sheet. A second electrically conductive sheet is punched to have a notching opening corresponding to that of first electrically conductive sheet, and this is adhered to the other side of the electrically resistive sheet such that the notching openings are aligned. This structure is cleaved from surrounding material to form an electrochemical cell that has a sample space for receiving a sample defined by the first and second conductive sheets and the notch in the electrically resistive sheet.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: September 18, 2012
    Assignee: AgaMatrix, Inc.
    Inventors: Ian Harding, Sridhar G. Iyengar, Marina T. Larson, Carl Oppedahl
  • Publication number: 20120205259
    Abstract: The presence of a select analyte such as glucose in the sample is evaluated in an electrochemical system using a conduction cell-type apparatus. A potential or current is generated between the two electrodes of the cell sufficient to bring about oxidation or reduction of the analyte or of a mediator in an analyte-detection redox system, thereby forming a chemical potential gradient of the analyte or mediator between the two electrodes after the gradient is established, the applied potential or current is discontinued and an analyte-independent signal is obtained from the relaxation of the chemical potential gradient. The analyte-independent signal is used to correct the analyte-dependent signal obtained during application of the potential or current.
    Type: Application
    Filed: January 24, 2012
    Publication date: August 16, 2012
    Applicant: AgaMatrix, Inc.
    Inventors: Sridhar G. Iyengar, Ian Harding
  • Patent number: 8207336
    Abstract: Bis-(4,4?dimethyl-2,2?bipyridyl) picolinate osmium complexes are useful as mediators in the electrochemical test strips, such as those used in the detection of glucose.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: June 26, 2012
    Assignee: AgaMatrix, Inc.
    Inventor: Ian Harding
  • Patent number: 8192610
    Abstract: Measurement of the series track resistance of a working and counter electrode pair in an electrochemical test strip provide error detection for multiple variations in the quality of the test strip, as well as the operation of strip in the test meter. In particular, a single measurement of series resistance can be used to detect and generate an error message when an incorrect reading is likely to result due to (1) damaged electrode tracks, (2) fouled electrode surfaces, (3) dirty strip contacts, or (4) short circuit between the electrodes.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: June 5, 2012
    Assignee: AgaMatrix, Inc.
    Inventors: Steven Diamond, Ian Harding, Richard Williams
  • Patent number: 8182636
    Abstract: Electrochemical test cells are made with precision and accuracy by adhering an electrically resistive sheet having a bound opening to a first electrically conductive sheet. A notching opening is then punched through the electrically resistive sheet and the first electrically conductive sheet. The notching opening intersects the first bound opening in the electrically resistive sheet, and transforms the first bound opening into a notch in the electrically resistive sheet. A second electrically conductive sheet is punched to have a notching opening corresponding to that of first electrically conductive sheet, and this is adhered to the other side of the electrically resistive sheet such that the notching openings are aligned. This structure is cleaved from surrounding material to form an electrochemical cell that has a sample space for receiving a sample defined by the first and second conductive sheets and the notch in the electrically resistive sheet.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: May 22, 2012
    Assignee: AgaMatrix, Inc.
    Inventors: Ian Harding, Sridhar G. Iyengar, Marina T. Larson, Carl Oppedahl
  • Patent number: 8123920
    Abstract: The presence of a select analyte in the sample is evaluated in an electrochemical system using a conduction cell-type apparatus. A potential or current is generated between the two electrodes of the cell sufficient to bring about oxidation or reduction of the analyte or of a mediator in an analyte-detection redox system, thereby forming a chemical potential gradient of the analyte or mediator between the two electrodes After the gradient is established, the applied potential or current is discontinued and an analyte-independent signal is obtained from the relaxation of the chemical potential gradient. The analyte-independent signal is used to correct the analyte-dependent signal obtained during application of the potential or current.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: February 28, 2012
    Assignee: Agamatrix, Inc.
    Inventors: Sridhar G. Iyengar, Ian Harding
  • Patent number: 8089623
    Abstract: Methods for normalizing output from an instrument employing a reference standard or non-fluorescing substance disposed within at least one of a plurality of reaction chambers. The method comprises collecting and analyzing a signal associated with the reference standard or non-fluorescing substance to determine a normalizing bias. The normalizing bias is then applied to the data signal collected from a remainder of the plurality of reaction chambers.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: January 3, 2012
    Assignee: Applied Biosystems LLC
    Inventors: H. Pin Kao, Ian A. Harding, Achim Karger, Mark F. Oldham, Omead Ostadan, Greg Young
  • Publication number: 20110290673
    Abstract: A method is provided for determining analyte concentrations, for example glucose concentrations, that utilizes a dynamic determination of the appropriate time for making a glucose measurement, for example when a current versus time curve substantially conforms to a Cottrell decay, or when the current is established in a plateau region. Dynamic determination of the time to take the measurement allows each strip to operate in the shortest appropriate time frame, thereby avoiding using an average measurement time that may be longer than necessary for some strips and too short for others.
    Type: Application
    Filed: August 9, 2011
    Publication date: December 1, 2011
    Applicant: AGAMATRIX, INC.
    Inventors: Steven Diamond, Ian Harding, Sridhar G. Iyengar, Baoguo Wei