Patents by Inventor Ian W. Hunter

Ian W. Hunter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130002052
    Abstract: An electric device including: a stator assembly; and an actuator including a coil having an axis, wherein the stator assembly includes: a stator core arranged along a linear axis, the stator core made up of a plurality of magnets each characterized by a magnetic moment, the plurality of magnets arranged in a stack along the linear axis with the magnet moments of the plurality of magnets being co-linearly aligned parallel to the linear axis, wherein the plurality of magnets includes a first magnet and a second magnet positioned adjacent to each other in the stack separated by a gap and with their magnetic moments in opposition to each other, and wherein the actuator is arranged on the stator core with the coil of the actuator encircling the linear axis with the axis of the coil parallel to the linear axis.
    Type: Application
    Filed: July 1, 2011
    Publication date: January 3, 2013
    Inventors: Ian W. Hunter, Timothy A. FOFONOFF
  • Patent number: 8328755
    Abstract: A needle-free transdermal transport device for transferring a substance across a surface of a biological body includes a reservoir for storing the substance, a nozzle in fluid communication with the reservoir and a controllable electromagnetic actuator in communication with the reservoir. The actuator, referred to as a Lorentz force actuator, includes a stationary magnet assembly and a moving coil assembly. The coil assembly moves a piston having an end portion positioned within the reservoir. The actuator receives an electrical input and generates in response a corresponding force acting on the piston and causing a needle-free transfer of the substance between the reservoir and the biological body. The magnitude, direction and duration of the force are dynamically controlled (e.g., servo-controlled) by the electrical input and can be altered during the course of an actuation cycle. Beneficially, the actuator can be moved in different directions according to the electrical input.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: December 11, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Andrew J. Taberner, Brian D. Hemond, Dawn M. Wendell, Nora Catherine Hogan, Nathan B. Ball
  • Patent number: 8246582
    Abstract: A transdermal transport device includes a reservoir for holding a formulation of an active principle, and a needle with a bore extending along the length of the needle from a first end of the needle to a second end of the needle. The second end is substantially aligned to a plane parallel to a body surface of a biological body when the device is placed on the body surface. The device also includes an actuator which pumps the formulation through the bore of the needle between a target area of the body and the reservoir.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: August 21, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Aimee B. Angel, Ian W. Hunter
  • Publication number: 20120205534
    Abstract: A miniature, low cost mass spectrometer capable of unit resolution over a mass range of 10 to 50 AMU. The mass spectrometer incorporates several features that enhance the performance of the design over comparable instruments. An efficient ion source enables relatively low power consumption without sacrificing measurement resolution. Variable geometry mechanical filters allow for variable resolution. An onboard ion pump removes the need for an external pumping source. A magnet and magnetic yoke produce magnetic field regions with different flux densities to run the ion pump and a magnetic sector mass analyzer. An onboard digital controller and power conversion circuit inside the vacuum chamber allows a large degree of flexibility over the operation of the mass spectrometer while eliminating the need for high-voltage electrical feedthroughs. The miniature mass spectrometer senses fractions of a percentage of inlet gas and returns mass spectra data to a computer.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 16, 2012
    Inventors: Ian W. Hunter, Brian D. Hemond, Harold F. Hemond
  • Publication number: 20120165608
    Abstract: An endoscopic imaging system includes a reusable control cabinet having a number of actuators that control the orientation of a lightweight endoscope that is connectable thereto. The endoscope is used with a single patient and is then disposed. The endoscope includes an illumination mechanism, an image sensor and an elongate shaft having one or more lumens located therein. A polymeric articulation joint at the distal end of the endoscope allows the distal end to be oriented by the control cabinet. The endoscope is coated with a hydrophilic coating that reduces its coefficient of friction and because it is lightweight, requires less force to advance it to a desired location within a patient.
    Type: Application
    Filed: December 30, 2011
    Publication date: June 28, 2012
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Michael S. Banik, Dennis R. Boulais, Lucien Alfred Couvillon, JR., Albert C.C. Chin, Ian W. Hunter
  • Patent number: 8172790
    Abstract: A needle-free transdermal transport device includes a chamber (900) for holding the substance to be injected, a nozzle (910) in fluid communication with the chamber, and a drug reservoir (950) for storing the substance to be transferred to the chamber. The needle-free transdermal transport device also includes a controllable magnet and coil electromagnetic actuator (242) in communication with the chamber. The actuator receives an electrical input and generates in response a force. The force then causes a needle-free transfer of the substance from the chamber to the biological body. The force is variable responsive to variations in the received input during actuation. The actuator draws the substance from the drug reservoir or alternatively, the substance can be pressurized from the drug reservoir into the chamber by a pressure source.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: May 8, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Brian D. Hemond, Dawn M. Wendell, Nora Catherine Hogan, Andrew J. Taberner, Nathan B. Ball
  • Publication number: 20120095435
    Abstract: A method for transferring a solid body across a surface of a biological body includes (i) applying an electrical input to a controllable electromagnetic actuator; (ii) producing with the electromagnetic actuator a mechanical force corresponding to the electrical input; and (iii) applying the mechanical force to a reservoir coupled at one end to a nozzle, the mechanical force producing a pressure within the reservoir, a magnitude of the pressure varying with the mechanical force and causing ejection of a fluid from the reservoir to drive the solid body into the biological body. A method for delivering a substance to a target body includes (i) positioning a needle-free injector proximate to a surface of the target body; (ii) injecting the substance into the target body; and (iii) while injecting, moving the needle-free injector along the surface, thereby sweeping the surface.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 19, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Andrew J. Taberner, N. Catherine Hogan
  • Publication number: 20120089114
    Abstract: A method for injecting a substance through a biological body surface includes providing a needle-free transdermal transport device configured to inject the substance through the surface. The substance is injected into the biological body with the transport device while a parameter of the injection is sensed and a servo-controller is used to dynamically adjust at least one injection characteristic based on the sensed parameter. The substance is injected for (i) a first time period during which a first portion of a volume of the substance is injected at a first injection pressure, and (ii) a second time period during which a remainder of the volume of the substance is injected at a second injection pressure. A viscosity of the substance may be determined, and a pressure calculated for injecting the substance based on the viscosity. The substance may be injected with the transport device by using the calculated pressure.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 12, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Brian D. Hemond, Ian W. Hunter, Andrew J. Taberner, Dawn M. Wendell, N. Catherine Hogan
  • Patent number: 8105270
    Abstract: A medical device includes a sensor that is configured to measure a property of an outer layer of an anatomical body surface. The sensor includes a source probe configured to stimulate a local surface of the outer layer of an anatomical body surface. The sensor also includes a detector configured to measure a response of the outer layer resulting from the source probe stimulation. A controller coupled to the source probe and the sensor drives the source probe using a tailored stochastic sequence and determines the property of the outer layer using the measured response received from the detector. The sensor can be used with medical devices, such as drug delivery devices including microneedle transport devices and needleless injection devices.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: January 31, 2012
    Assignee: Massachusetts Institute of Technology
    Inventor: Ian W Hunter
  • Publication number: 20120003601
    Abstract: A tooth treatment device includes a detector that detects a marker of oral health and a fluid ejector that ejects fluid against teeth in response to the detected marker. The device can include a housing configured to be held on hand, the fluid ejector being positioned at an end of the housing. The fluid may include a liquid, a medicant, a cleansing solution, cleaning particles, or any combination thereof. The medicant can include any combination of a chelating agent, fluoride, a fluorescent dye, a bacterial specific probe, and a biochemical specific biomarker. Further, the device can include a servo controller controlling pressure of ejected fluid in response to the detected marker and a sensed surface condition, latter including for example, a mechanical property of tissue. The device may include a pressure sensor that senses pressure of the fluid in the ejector. Also included may be a distance sensor that senses distance of the ejector from a tissue surface.
    Type: Application
    Filed: December 15, 2010
    Publication date: January 5, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Yi Chen, N. Catherine Hogan, Bryan P. Ruddy
  • Publication number: 20110319877
    Abstract: A platform Smart Scalpel system using rapid real-time feedback for effecting laser treatment. The platform system includes an imaging system for rapid real-time detection of tissue characteristics, a processing system for processing the detected characteristics, and a treatment system for effecting treatment in accordance with results of the processing. The platform system provides for preprogramming and real-time inputting conditions and parameters for diagnosis using the imaging system and/or treatment using the treatment system.
    Type: Application
    Filed: June 27, 2011
    Publication date: December 29, 2011
    Applicants: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE GENERAL HOSPITAL CORPORATION
    Inventors: R. Rox Anderson, Ian W. Hunter, Colin J. H. Brenan, Keng Hui Lim, Elizabeth Sebem
  • Publication number: 20110311939
    Abstract: A method of tooth treatment includes sensing a surface condition of tooth or gum and controlling ejection of a fluid jet against the tooth based on the sensed condition. The fluid may be a liquid and may be carried in a self-contained reservoir in a handle of a fluid ejection device. The liquid can be a cleansing solution and may contain cleaning particles. The ejection can be controlled to clean teeth at high pressure and to reduce pressure applied to gum, for example, to clean plaque. In some embodiments, the method may be used to remove soft tooth. The method may further include automatically scanning the fluid jet relative to a handle of an injection device. In an embodiment, the fluid is ejected by means of a fluid ejector comprising a stationary magnet assembly providing a magnetic field and a coil assembly, slidably disposed with respect to the magnet assembly, the coil assembly driving ejection of the fluid jet.
    Type: Application
    Filed: December 15, 2010
    Publication date: December 22, 2011
    Applicant: Massachusetts Institute of Technology
    Inventor: Ian W. Hunter
  • Publication number: 20110303531
    Abstract: Structure with electrically switchable wettability. The structure includes a doped conducting polymer, a counter electrode and an electrolyte disposed between the doped conducting polymer and the counter electrode. A preferred conducting polymer is polypyrrole doped with fluorinated carbon ions. A voltage between the doped conducting polymer and the counter electrode will cause the conductive polymer to switch between hydrophobic and hydrophilic states.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 15, 2011
    Applicant: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Jean H. Chang
  • Publication number: 20110257626
    Abstract: A needle-free transdermal transport device for transferring a substance across a surface of a biological body includes a reservoir for storing the substance, a nozzle in fluid communication with the reservoir and a controllable electromagnetic actuator in communication with the reservoir. The actuator, referred to as a Lorentz force actuator, includes a stationary magnet assembly and a moving coil assembly. The coil assembly moves a piston having an end portion positioned within the reservoir. The actuator receives an electrical input and generates in response a corresponding force acting on the piston and causing a needle-free transfer of the substance between the reservoir and the biological body. The magnitude, direction and duration of the force are dynamically controlled (e.g., servo-controlled) by the electrical input and can be altered during the course of an actuation cycle. Beneficially, the actuator can be moved in different directions according to the electrical input.
    Type: Application
    Filed: October 18, 2010
    Publication date: October 20, 2011
    Applicant: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Andrew J. Taberner, Brian D. Hemond, Dawn M. Wendell, Nora Catherine Hogan, Nathan B. Ball
  • Publication number: 20110166549
    Abstract: The present invention relate to a method and corresponding apparatus for just in time mixing of a solid or powdered formulation and its subsequent delivery to a biological body. In some embodiments, a powdered formulation is maintained in a first chamber. A bi-directional electromagnetic actuator is in communication with the chamber. The actuator, when activated, generates a pressure within the first chamber. The pressure results in mixing of the powdered formulation and a diluent in time for delivering into the biological body.
    Type: Application
    Filed: December 3, 2010
    Publication date: July 7, 2011
    Applicant: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Andrew J. Taberner, N. Catherine Hogan
  • Patent number: 7967016
    Abstract: A platform Smart Scalpel system using rapid real-time feedback for effecting laser treatment. The platform system includes an imaging system for rapid real-time detection of tissue characteristics, a processing system for processing the detected characteristics, and a treatment system for effecting treatment in accordance with results of the processing. The platform system provides for preprogramming and real-time inputting conditions and parameters for diagnosis using the imaging system and/or treatment using the treatment system.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: June 28, 2011
    Assignees: The General Hospital Corporation, Massachusetts Institute of Technology
    Inventors: R. Rox Anderson, Ian W. Hunter, Colin J. H. Brenan, Keng Hui Lim, Elizabeth Sebern
  • Publication number: 20110143310
    Abstract: A method of surface treatment includes sensing a surface condition and controlling ejection of a fluid jet against the surface to treat the surface based on the sensed condition. The fluid may be a liquid and may be carried in a self-contained reservoir in a handle of a fluid ejection device. The liquid can be a cleansing solution and may contain cleaning particles. The ejection can be controlled to clean a part of the surface at high pressure and to reduce pressure applied to another part of the surface, for example, to clean the surface. The method may further include automatically scanning the fluid jet relative to a handle of an injection device. In an embodiment, the fluid is ejected by means of a fluid ejector comprising a stationary magnet assembly providing a magnetic field and a coil assembly, slidably disposed with respect to the magnet assembly, the coil assembly driving ejection of the fluid jet.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 16, 2011
    Inventor: Ian W. Hunter
  • Publication number: 20110109174
    Abstract: An electric generator device includes a magnetic stator assembly, opposed coils, and a rotary-to-linear converter (e.g., cam). The coils are configured to reciprocate relative to the magnetic stator assembly or to linearly translate in a common direction relative to the magnetic stator assembly. The coils are coupled to the cam and, upon rotary or linear motion of the cam, reciprocate or linearly translate relative to the magnetic stator assembly. The reciprocation or linear translation of the coils creates an electric current flowing through the coils, which may then be harvested.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 12, 2011
    Applicant: Nucleus Scientific
    Inventor: Ian W. Hunter
  • Publication number: 20110108339
    Abstract: A rotary and linear motion device includes a magnetic stator assembly, opposed electromagnetic actuators, and a linear-to-rotary converter (e.g., cam). Each electromagnetic actuator includes a coil that is configured to reciprocate relative to the magnetic stator assembly or to linearly translate in a common direction relative to the magnetic stator assembly. The electromagnetic actuators are coupled to the linear-to-rotary converter and upon reciprocation or linear translation, drive the linear-to-rotary converter in rotary or linear motion. The device may be located inside a wheel, which may be part of a vehicle. If part of a wheel of a vehicle, the device can be used to provide propulsion, steering, braking, and suspension for the vehicle.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 12, 2011
    Applicant: Nucleus Scientific
    Inventor: Ian W. Hunter
  • Publication number: 20110109413
    Abstract: Instead of being made from one continuous piece of material, a coil includes multiple flat coil segments that are stacked together and electrically coupled in series. In many embodiments, the coil segments are U-shaped segments, and the segments are arranged so that each segment is rotated (e.g., by 270 degrees) with respect the segment it follows. The stacked coils may then be fastened together using, for example, bolts through the corners of the coil segments. The combined coil segments form a continuous coil.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 12, 2011
    Applicant: Nucleus Scientific
    Inventors: Ian W. Hunter, Timothy A. Fofonoff