Patents by Inventor Ian Young

Ian Young has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10825509
    Abstract: A full-rail digital-read CIM circuit enables a weighted read operation on a single row of a memory array. A weighted read operation captures a value of a weight stored in the single memory array row without having to rely on weighted row-access. Rather, using full-rail access and a weighted sampling capacitance network, the CIM circuit enables the weighted read operation even under process variation, noise and mismatch.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: November 3, 2020
    Assignee: Intel Corporation
    Inventors: Huseyin Ekin Sumbul, Gregory K. Chen, Raghavan Kumar, Phil Knag, Abhishek Sharma, Sasikanth Manipatruni, Amrita Mathuriya, Ram Krishnamurthy, Ian A. Young
  • Publication number: 20200334161
    Abstract: The present disclosure is directed to systems and methods of implementing a neural network using in-memory mathematical operations performed by pipelined SRAM architecture (PISA) circuitry disposed in on-chip processor memory circuitry. A high-level compiler may be provided to compile data representative of a multi-layer neural network model and one or more neural network data inputs from a first high-level programming language to an intermediate domain-specific language (DSL). A low-level compiler may be provided to compile the representative data from the intermediate DSL to multiple instruction sets in accordance with an instruction set architecture (ISA), such that each of the multiple instruction sets corresponds to a single respective layer of the multi-layer neural network model. Each of the multiple instruction sets may be assigned to a respective SRAM array of the PISA circuitry for in-memory execution.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 22, 2020
    Applicant: Intel Corporation
    Inventors: Amrita Mathuriya, Sasikanth Manipatruni, Victor Lee, Huseyin Sumbul, Gregory Chen, Raghavan Kumar, Phil Knag, Ram Krishnamurthy, IAN YOUNG, Abhishek Sharma
  • Publication number: 20200335610
    Abstract: Tunneling Field Effect Transistors (TFETs) are promising devices in that they promise significant performance increase and energy consumption decrease due to a steeper subthreshold slope (for example, smaller sub-threshold swing). In various embodiments, vertical fin-based TFETs can be fabricated in trenches, for example, silicon trenches. In another embodiment, vertical TFETs can be used on different material systems acting as a substrate and/or trenches (for example, Si, Ge, III-V semiconductors, GaN, and the like). In one embodiment, the tunneling direction in the channel of the vertical TFET can be perpendicular to the Si substrates. In one embodiment, this can be different than the tunneling direction in the channel of lateral TFETs.
    Type: Application
    Filed: February 28, 2018
    Publication date: October 22, 2020
    Applicant: Intel Corporation
    Inventors: Cheng-Ying Huang, Jack Kavalieros, Ian Young, Matthew Metz, Willy Rachmady, Uygar Avci, Ashish Agrawal, Benjamin Chu-Kung
  • Publication number: 20200321446
    Abstract: Field effect transistors having a ferroelectric or antiferroelectric gate dielectric structure are described. In an example, an integrated circuit structure includes a semiconductor channel structure includes a monocrystalline material. A gate dielectric is over the semiconductor channel structure. The gate dielectric includes a ferroelectric or antiferroelectric polycrystalline material layer. A gate electrode has a conductive layer on the ferroelectric or antiferroelectric polycrystalline material layer, the conductive layer including a metal. A first source or drain structure is at a first side of the gate electrode.
    Type: Application
    Filed: September 28, 2017
    Publication date: October 8, 2020
    Inventors: Seiyon KIM, Uygar E. AVCI, Joshua M. HOWARD, Ian A. YOUNG, Daniel H. MORRIS
  • Publication number: 20200321393
    Abstract: A three dimensional (3D) array of magnetic random access memory (MRAM) bit-cells is described, wherein the array includes a mesh of: a first interconnect extending along a first axis; a second interconnect extending along a second axis; and a third interconnect extending along a third axis, wherein the first, second and third axes are orthogonal to one another, and wherein a bit-cell of the MRAM bit-cells includes: a magnetic junction device including a first electrode coupled to the first interconnect; a piezoelectric (PZe) layer adjacent to a second electrode, wherein the second electrode is coupled to the second interconnect; and a first layer adjacent to the PZe layer and the magnetic junction, wherein the first layer is coupled the third interconnect.
    Type: Application
    Filed: June 28, 2016
    Publication date: October 8, 2020
    Applicant: Intel Corporation
    Inventors: Sasikanth Manipatruni, Dmitri E. Nikonov, Ian A. Young
  • Publication number: 20200312971
    Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate and a FinFET transistor on the substrate. The FinFET transistor includes a fin structure having a channel area, a source area, and a drain area. The FinFET transistor further includes a gate dielectric area between spacers above the channel area of the fin structure and below a top surface of the spacers; spacers above the fin structure and around the gate dielectric area; and a metal gate conformally covering and in direct contact with sidewalls of the spacers. The gate dielectric area has a curved surface. The metal gate is in direct contact with the curved surface of the gate dielectric area. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 1, 2020
    Inventors: Ashish PENUMATCHA, Seung Hoon SUNG, Scott CLENDENNING, Uygar AVCI, Ian A. YOUNG, Jack T. KAVALIEROS
  • Publication number: 20200312978
    Abstract: Techniques and mechanisms for providing electrical insulation or other protection of an integrated circuit (IC) device with a spacer structure which comprises an (anti)ferromagnetic material. In an embodiment, a transistor comprises doped source or drain regions and a channel region which are each disposed in a fin structure, wherein a gate electrode and an underlying dielectric layer of the transistor each extend over the channel region. Insulation spacers are disposed on opposite sides of the gate electrode, where at least a portion of one such insulation spacer comprises an (anti)ferroelectric material. Another portion of the insulation spacer comprises a non-(anti)ferroelectric material. In another embodiment, the two portions of the spacer are offset vertically from one another, wherein the (anti)ferroelectric portion forms a bottom of the spacer.
    Type: Application
    Filed: March 25, 2019
    Publication date: October 1, 2020
    Applicant: Intel Corporation
    Inventors: Jack KAVALIEROS, Ian YOUNG, Matthew METZ, Uygar AVCI, Chia-Ching LIN, Owen LOH, Seung Hoon SUNG, Aditya KASUKURTI, Sou-Chi CHANG, Tanay GOSAVI, Ashish Verma PENUMATCHA
  • Publication number: 20200312976
    Abstract: Techniques and mechanisms to provide electrical insulation between a gate and a channel region of a non-planar circuit device. In an embodiment, the gate structure, and insulation spacers at opposite respective sides of the gate structure, each extend over a semiconductor fin structure. In a region between the insulation spacers, a first dielectric layer extends conformally over the fin, and a second dielectric layer adjoins and extends conformally over the first dielectric layer. A third dielectric layer, adjoining the second dielectric layer and the insulation spacers, extends under the gate structure. Of the first, second and third dielectric layers, the third dielectric layer is conformal to respective sidewalls of the insulation spacers. In another embodiment, the second dielectric layer is of dielectric constant which is greater than that of the first dielectric layer, and equal to or less than that of the third dielectric layer.
    Type: Application
    Filed: March 25, 2019
    Publication date: October 1, 2020
    Applicant: Intel Corporation
    Inventors: Seung Hoon Sung, Jack Kavalieros, Ian Young, Matthew Metz, Uygar Avci, Devin Merrill, Ashish Verma Penumatcha, Chia-Ching Lin, Owen Loh
  • Publication number: 20200312950
    Abstract: A capacitor is disclosed that includes a first metal layer and a seed layer on the first metal layer. The seed layer includes a polar phase crystalline structure. The capacitor also includes a ferroelectric layer on the seed layer and a second metal layer on the ferroelectric layer.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 1, 2020
    Inventors: Nazila HARATIPOUR, Chia-Ching LIN, Sou-Chi CHANG, Ashish Verma PENUMATCHA, Owen LOH, Mengcheng LU, Seung Hoon SUNG, Ian A. YOUNG, Uygar AVCI, Jack T. KAVALIEROS
  • Publication number: 20200313075
    Abstract: A memory device includes a first electrode including a spin-orbit material, a magnetic junction on a portion of the first electrode and a first structure including a dielectric on a portion of the first electrode. The first structure has a first sidewall and a second sidewall opposite to the first sidewall. The memory device further includes a second structure on a portion of the first electrode, where the second structure has a sidewall adjacent to the second sidewall of the first structure. The memory device further includes a first conductive interconnect above and coupled with each of the magnetic junction and the second structure and a second conductive interconnect below and coupled with the first electrode, where the second conductive interconnect is laterally distant from the magnetic junction and the second structure.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 1, 2020
    Applicant: Intel Corporation
    Inventors: Noriyuki SATO, Angeline SMITH, Tanay GOSAVI, Sasikanth MANIPATRUNI, Kaan OGUZ, Kevin O'Brien, Benjamin BUFORD, Tofizur RAHMAN, Rohan PATIL, Nafees KABIR, Michael CHRISTENSON, Ian YOUNG, Hui Jae YOO, Christopher WIEGAND
  • Publication number: 20200312949
    Abstract: A capacitor is disclosed. The capacitor includes a first metal layer, a second metal layer on the first metal layer, a ferroelectric layer on the second metal layer, and a third metal layer on the ferroelectric layer. The second metal layer includes a first non-reactive barrier metal and the third metal layer includes a second non-reactive barrier metal. A fourth metal layer is on the third metal layer.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 1, 2020
    Inventors: Nazila HARATIPOUR, Chia-Ching LIN, Sou-Chi CHANG, Ashish Verma PENUMATCHA, Owen LOH, Mengcheng LU, Seung Hoon SUNG, Ian A. YOUNG, Uygar AVCI, Jack T. KAVALIEROS
  • Patent number: 10777250
    Abstract: Embodiments include apparatuses, methods, and systems associated with save-restore circuitry including metal-ferroelectric-metal (MFM) devices. The save-restore circuitry may be coupled to a bit node and/or bit bar node of a pair of cross-coupled inverters to save the state of the bit node and/or bit bar node when an associated circuit block transitions to a sleep state, and restore the state of the bit node and/or bit bar node when the associated circuit block transitions from the sleep state to an active state. The save-restore circuitry may be used in a flip-flop circuit, a register file circuit, and/or another suitable type of circuit. The save-restore circuitry may include a transmission gate coupled between the bit node (or bit bar node) and an internal node, and an MFM device coupled between the internal node and a plate line. Other embodiments may be described and claimed.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: September 15, 2020
    Assignee: Intel Corporation
    Inventors: Kaushik Vaidyanathan, Daniel H. Morris, Huichu Liu, Dileep J. Kurian, Uygar E. Avci, Tanay Karnik, Ian A. Young
  • Publication number: 20200287017
    Abstract: A gate stack is described that uses anti-ferroelectric material (e.g., Si, La, N, Al, Zr, Ge, Y doped HfO2) or ferroelectric material (e.g., Si, La, N, Al, Zr, Ge, Y doped HfO2, perovskite ferroelectric such as NH4H2PO4, KH2PO4, LiNb03, LiTaO3, BaTiO3, PbTiO3, Pb (Zr,Ti) O3, (Pb,La)TiO3, and (Pb,La)(Zr,Ti)O3) which reduces write voltage, improves endurance, and increases retention. The gate stack of comprises strained anti-FE or FE material and depolarized anti-FE or FE. The endurance of the FE transistor is further improved by using a higher K (constant) dielectric (e.g., SiO2, Al2O3, HfO2, Ta2O3, La2O3) in the gate stack. High K effects may also be achieved by depolarizing the FE or FE oxide in the transistor gate stack.
    Type: Application
    Filed: March 6, 2019
    Publication date: September 10, 2020
    Applicant: Intel Corporation
    Inventors: Sou-Chi CHANG, Chia-Chang LIN, Seung Hoon SUNG, Ashish Verma PENUMATCHA, Nazila HARATIPOURA, Owen LOH, Jack KAVALIEROS, Uygar AVCI, Ian YOUNG
  • Publication number: 20200286686
    Abstract: Described is a ferroelectric-based capacitor that improves reliability of a ferroelectric memory by using low-leakage insulating thin film. In one example, the low-leakage insulating thin film is positioned between a bottom electrode and a ferroelectric oxide. In another example, the low-leakage insulating thin film is positioned between a top electrode and ferroelectric oxide. In yet another example, the low-leakage insulating thin film is positioned in the middle of ferroelectric oxide to reduce the leakage current and improve reliability of the ferroelectric oxide.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 10, 2020
    Applicant: Intel Corporation
    Inventors: Chia-Ching Lin, Sou-Chi Chang, Ashish Verma Penumatcha, Nazila Haratipour, Seung Hoon Sung, Owen Y. Loh, Jack Kavalieros, Uygar E. Avci, Ian A. Young
  • Publication number: 20200286685
    Abstract: Described is a ferroelectric based capacitor that reduces non-polar monoclinic phase and increases polar orthorhombic phase by epitaxial strain engineering in the oxide thin film and/or electrodes. As such, both memory window and reliability are improved. The capacitor comprises: a first structure comprising metal, wherein the first structure has a first lattice constant; a second structure comprising metal, wherein the second structure has a second lattice constant; and a third structure comprising ferroelectric material (e.g., oxide of Hf or Zr), wherein the third structure is between and adjacent to the first and second structures, wherein the third structure has a third lattice constant, and wherein the first and second lattice constants are smaller than the third lattice constant.
    Type: Application
    Filed: March 6, 2019
    Publication date: September 10, 2020
    Applicant: Intel Corporation
    Inventors: Chia-Ching Lin, Sou-Chi Chang, Ashish Verma Penumatcha, Nazila Haratipour, Seung Hoon Sung, Owen Y. Loh, Jack Kavalieros, Uygar E. Avci, Ian A. Young
  • Publication number: 20200286687
    Abstract: Described is an ultra-dense ferroelectric memory. The memory is fabricated using a patterning method by that applies atomic layer deposition with selective dry and/or wet etch to increase memory density at a given via opening. A ferroelectric capacitor in one example comprises: a first structure (e.g., first electrode) comprising metal; a second structure (e.g., a second electrode) comprising metal; and a third structure comprising ferroelectric material, wherein the third structure is between and adjacent to the first and second structures, wherein a portion of the third structure is interdigitated with the first and second structures to increase surface area of the third structure. The increased surface area allows for higher memory density.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 10, 2020
    Applicant: Intel Corporation
    Inventors: Chia-Ching Lin, Sou-Chi Chang, Nazila Haratipour, Seung Hoon Sung, Ashish Verma Penumatcha, Jack Kavalieros, Uygar E. Avci, Ian A. Young
  • Publication number: 20200286984
    Abstract: Disclosed herein are capacitors with ferroelectric or antiferroelectric (FE/AFE) material and dielectric material, as well as related methods and devices. In some embodiments, a capacitor may include two electrodes, a layer of FE/AFE material between the electrodes, and a layer of dielectric material between the electrodes.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 10, 2020
    Applicant: Intel Corporation
    Inventors: Sou-Chi Chang, Chia-Ching Lin, Ashish Verma Penumatcha, Uygar E. Avci, Ian A. Young
  • Publication number: 20200279805
    Abstract: Techniques are disclosed for forming vias for integrated circuit structures. During an additive via formation process, a dielectric material is deposited, an etch stop layer is deposited, a checkerboard pattern is deposited on the etch stop layer, regions in the checkerboard pattern are removed where it is desired to have vias, openings are etched in the dielectric material through the removed regions, and the openings are filled with a first via material. This is then repeated for a second via material. During the subtractive via formation process, a first via material is deposited, an etch stop layer is deposited, a checkerboard pattern is deposited on the etch stop layer, regions in the checkerboard pattern are removed where it is not desired to have vias, openings are etched in the first via material through the removed regions. This is then repeated for a second via material.
    Type: Application
    Filed: November 3, 2017
    Publication date: September 3, 2020
    Applicant: INTEL CORPORATION
    Inventors: Sasikanth Manipatruni, Jasmeet S. Chawla, Chia-Ching Lin, Dmitri E. Nikonov, Ian A. Young, Robert L. Bristol
  • Patent number: 10749104
    Abstract: Some embodiments include apparatuses having a first magnet, a first stack of layers coupled to a first portion of the first magnet, a first layer coupled to a second portion of the first magnet, a second magnet, a second stack of layers coupled to a first portion of the second magnet, a second layer coupled to a second portion of the second magnet, a conductor coupled to the first stack of layers and to the second layer, and a conductive path coupled to the first portion of the first magnet and to the first portion of the second magnet, each of the first and second layers including a magnetoelectric material, each of the first and second stacks of layers providing an inverse spin orbit coupling effect.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: August 18, 2020
    Assignee: Intel Corporation
    Inventors: Huichu Liu, Daniel Morris, Tanay Karnik, Sasikanth Manipatruni, Kaushik Vaidyanathan, Ian Young
  • Patent number: 10748603
    Abstract: A memory circuit has compute-in-memory circuitry that enables a multiply-accumulate (MAC) operation based on shared charge. Row access circuitry drives multiple rows of a memory array to multiply a first data word with a second data word stored in the memory array. The row access circuitry drives the multiple rows based on the bit pattern of the first data word. Column access circuitry drives a column of the memory array when the rows are driven. Accessed rows discharge the column line in an accumulative fashion. Sensing circuitry can sense voltage on the column line. A processor in the memory circuit computes a MAC value based on the voltage sensed on the column.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: August 18, 2020
    Assignee: Intel Corporation
    Inventors: Huseyin Ekin Sumbul, Gregory K. Chen, Raghavan Kumar, Phil Knag, Abhishek Sharma, Sasikanth Manipatruni, Amrita Mathuriya, Ram Krishnamurthy, Ian A. Young