Patents by Inventor Ibrahim Ucok

Ibrahim Ucok has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11466935
    Abstract: Systems and methods for altering microstructures of materials are disclosed. The system may include at least one computing device in communication with a heating device and an electromagnetic device. The computing device(s) may be configured to alter a microstructure of a material forming a component by performing processes including heating the component using the heating device to a predetermined temperature. The predetermined temperature may be below a first phase-transformation temperature based on the material forming the component, and a second phase-transformation temperature based on the material forming the component, where the second phase-transformation temperature greater than the first phase-transformation temperature. The computing device(s) may also perform processes including intermittently magnetizing the heated component using the electromagnetic device for a predetermined number of cycles, and cooling the component after intermittently magnetizing the heated component.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: October 11, 2022
    Assignee: General Electric Company
    Inventors: Junyoung Park, Ibrahim Ucok
  • Publication number: 20210221093
    Abstract: A process includes forming a printed article having an external surface and at least one microfeature with an internal surface by additive manufacture, coating the external surface and the internal surface of the printed article with a metallic microlayer to form a coated article, and densifying the coated article to form a component. After formation, the printed article has a porosity such that the printed article is not at full density. A densified component includes a printed article having an external surface and at least one microfeature with an internal surface and a metallic microlayer coating the external surface and the internal surface of the printed article. The printed article is formed by additive manufacture.
    Type: Application
    Filed: March 10, 2021
    Publication date: July 22, 2021
    Inventors: Ibrahim UCOK, Yan CUI, Srikanth Chandrudu KOTTILINGAM, Surinder Singh PABLA
  • Publication number: 20210214826
    Abstract: Systems and methods for altering microstructures of materials are disclosed. The system may include at least one computing device in communication with a heating device and an electromagnetic device. The computing device(s) may be configured to alter a microstructure of a material forming a component by performing processes including heating the component using the heating device to a predetermined temperature. The predetermined temperature may be below a first phase-transformation temperature based on the material forming the component, and a second phase-transformation temperature based on the material forming the component, where the second phase-transformation temperature greater than the first phase-transformation temperature. The computing device(s) may also perform processes including intermittently magnetizing the heated component using the electromagnetic device for a predetermined number of cycles, and cooling the component after intermittently magnetizing the heated component.
    Type: Application
    Filed: January 10, 2020
    Publication date: July 15, 2021
    Inventors: Junyoung Park, Ibrahim Ucok
  • Patent number: 10975719
    Abstract: A process includes forming a printed article having an external surface and at least one microfeature with an internal surface by additive manufacture, coating the external surface and the internal surface of the printed article with a metallic microlayer to form a coated article, and densifying the coated article to form a component. After formation, the printed article has a porosity such that the printed article is not at full density. A densified component includes a printed article having an external surface and at least one microfeature with an internal surface and a metallic microlayer coating the external surface and the internal surface of the printed article. The printed article is formed by additive manufacture.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: April 13, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ibrahim Ucok, Yan Cui, Srikanth Chandrudu Kottilingam, Surinder Singh Pabla
  • Patent number: 10787726
    Abstract: A ductile iron composition including, by weight: about 3.4% to about 4.0% Si; about 3.0% to about 3.5% C; about 0.5% to about 1.0% Cr; about 0.02% to about 0.05% Mo; up to about 0.01% S; up to about 0.5% Mn; and balance iron and incidental impurities. The composition has a a ferritic body center cubic microstructure and has a graphite nodule density of greater than 100 per mm2. A method for forming a ductile iron composition is also disclosed.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: September 29, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Junyoung Park, Ibrahim Ucok
  • Publication number: 20180187569
    Abstract: A process includes forming a printed article having an external surface and at least one microfeature with an internal surface by additive manufacture, coating the external surface and the internal surface of the printed article with a metallic microlayer to form a coated article, and densifying the coated article to form a component. After formation, the printed article has a porosity such that the printed article is not at full density. A densified component includes a printed article having an external surface and at least one microfeature with an internal surface and a metallic microlayer coating the external surface and the internal surface of the printed article. The printed article is formed by additive manufacture.
    Type: Application
    Filed: January 5, 2017
    Publication date: July 5, 2018
    Inventors: Ibrahim UCOK, Yan CUI, Srikanth Chandrudu KOTTILINGAM, Surinder Singh PABLA
  • Publication number: 20180009051
    Abstract: A method of providing an oxidation resistant coating is disclosed. The method includes providing a substrate having a first surface and cooling holes. A portable coating device includes electro-spark deposition (ESD) equipment and an ESD torch connected with the ESD equipment. The ESD torch has an inert gas source and a rotary electrode conductive material. The rotary electrode is positioned within the ESD torch, and is shielded by an inert gas. The rotary electrode applies a compositionally controlled protective coating to the first surface of the substrate. Then the rotary electrode is inserted into the cooling hole and generates an electrospark between rotary ESD electrode and the substrate to form a rounded edge and deposit a coating of electrode material alloy at a cooling hole edge.
    Type: Application
    Filed: September 7, 2017
    Publication date: January 11, 2018
    Inventors: Dechao LIN, Ibrahim UCOK, Kivilcim ONAL
  • Patent number: 9839958
    Abstract: A method for making an equiaxed investment casting. The method utilizes an ultrasonic generator to send an ultrasonic pulse into molten metal in an investment casting mold. The investment casting mold is positioned within a working zone of furnace having low output induction coils for generating a convection current in molten metal. The ultrasonic pulse separates dendrites growing from the face of the mold inward into the molten metal. Instead, equiaxed grains can nucleate within the molten metal. In addition, the ultrasonic pulse and the low output induction coils circulate the molten metal as solute is rejected from solidifying equiaxed grains. The mixing reduces the effects of segregation in the solidifying alloy and assists in nucleating equiaxed grains.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: December 12, 2017
    Assignee: General Electric Company
    Inventors: Junyoung Park, Jason Robert Parolini, Ibrahim Ucok
  • Publication number: 20170314104
    Abstract: A ductile iron composition including, by weight: about 3.4% to about 4.0% Si; about 3.0% to about 3.5% C; about 0.5% to about 1.0% Cr; about 0.02% to about 0.05% Mo; up to about 0.01% S; up to about 0.5% Mn; and balance iron and incidental impurities. The composition has a a ferritic body center cubic microstructure and has a graphite nodule density of greater than 100 per mm2. A method for forming a ductile iron composition is also disclosed.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 2, 2017
    Inventors: Junyoung PARK, Ibrahim UCOK
  • Patent number: 9789557
    Abstract: A method of providing an oxidation resistant coating is disclosed. The method includes providing a substrate having a first surface and cooling holes. A portable coating device includes electro-spark deposition (ESD) equipment and an ESD torch connected with the ESD equipment. The ESD torch has an inert gas source and a rotary electrode conductive material. The rotary electrode is positioned within the ESD torch, and is shielded by an inert gas. The rotary electrode applies a compositionally controlled protective coating to the first surface of the substrate. Then the rotary electrode is inserted into the cooling hole and generates an electrospark between rotary ESD electrode and the substrate to form a rounded edge and deposit a coating of electrode material alloy at a cooling hole edge.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: October 17, 2017
    Assignee: General Electric Company
    Inventors: Dechao Lin, Ibrahim Ucok, Kivilcim Onal
  • Patent number: 9649686
    Abstract: Casting preforms are provided including a casting preform assembly; and a plurality of geometrically shaped bodies, wherein the plurality of geometrically shaped bodies are arranged or interconnected to form the casting preform assembly. Also provided is a method of using a casting preform, including forming a casting preform assembly, wherein the casting preform assembly includes a plurality of geometrically shaped bodies; anchoring the casting preform to an outer surface of a casting mold; introducing a fluid casting material into the casting mold; applying centrifugal force to the casting mold; forming a molded article, wherein at least a portion of the surface of the molded article is reinforced with the plurality of geometrically shaped bodies.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: May 16, 2017
    Assignee: General Electric Company
    Inventors: Ibrahim Ucok, Junyoung Park, Jason Robert Parolini
  • Publication number: 20170030212
    Abstract: A near flow path seal member includes a seal body having a first end portion extending to a second end portion having a dovetail member. The first end portion includes a third end and a fourth end having a surface extending therebetween and facing away from the dovetail member, the surface having a longitudinal axis extending between the third end and the fourth end. A recess formed in the surface has a geometry to receive a seal element assembly having a base extending to at least one seal element. The seal element assembly is selectively installable or removable from the recess.
    Type: Application
    Filed: July 29, 2015
    Publication date: February 2, 2017
    Inventors: Junyoung PARK, Zachary James TAYLOR, Ibrahim UCOK
  • Publication number: 20160136725
    Abstract: A method for making an equiaxed investment casting. The method utilizes an ultrasonic generator to send an ultrasonic pulse into molten metal in an investment casting mold. The investment casting mold is positioned within a working zone of furnace having low output induction coils for generating a convection current in molten metal. The ultrasonic pulse separates dendrites growing from the face of the mold inward into the molten metal. Instead, equiaxed grains can nucleate within the molten metal. In addition, the ultrasonic pulse and the low output induction coils circulate the molten metal as solute is rejected from solidifying equiaxed grains. The mixing reduces the effects of segregation in the solidifying alloy and assists in nucleating equiaxed grains.
    Type: Application
    Filed: January 27, 2016
    Publication date: May 19, 2016
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Junyoung PARK, Jason Robert PAROLINI, Ibrahim UCOK
  • Patent number: 9278389
    Abstract: A method for making an equiaxed investment casting. The method utilizes an ultrasonic generator to send an ultrasonic pulse into molten metal in an investment casting mold. The investment casting mold is positioned within a working zone of furnace having low output induction coils for generating a convection current in molten metal. The ultrasonic pulse separates dendrites growing from the face of the mold inward into the molten metal. Instead, equiaxed grains can nucleate within the molten metal. In addition, the ultrasonic pulse and the low output induction coils circulate the molten metal as solute is rejected from solidifying equiaxed grains. The mixing reduces the effects of segregation in the solidifying alloy and assists in nucleating equiaxed grains.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: March 8, 2016
    Assignee: General Electric Company
    Inventors: Junyoung Park, Jason Robert Parolini, Ibrahim Ucok
  • Publication number: 20160031033
    Abstract: A method of providing an oxidation resistant coating is disclosed. The method includes providing a substrate having a first surface and cooling holes. A portable coating device includes electro-spark deposition (ESD) equipment and an ESD torch connected with the ESD equipment. The ESD torch has an inert gas source and a rotary electrode conductive material. The rotary electrode is positioned within the ESD torch, and is shielded by an inert gas. The rotary electrode applies a compositionally controlled protective coating to the first surface of the substrate. Then the rotary electrode is inserted into the cooling hole and generates an electrospark between rotary ESD electrode and the substrate to form a rounded edge and deposit a coating of electrode material alloy at a cooling hole edge.
    Type: Application
    Filed: August 3, 2015
    Publication date: February 4, 2016
    Inventors: Dechao LIN, Ibrahim UCOK, Kivilcim ONAL
  • Publication number: 20140050938
    Abstract: A method of providing an oxidation resistant coating is disclosed. The method includes providing a substrate having a first surface and cooling holes. A portable coating device includes electro-spark deposition (ESD) equipment and an ESD torch connected with the ESD equipment. The ESD torch has an inert gas source and a rotary electrode conductive material. The rotary electrode is positioned within the ESD torch, and is shielded by an inert gas. The rotary electrode applies a compositionally controlled protective coating to the first surface of the substrate. Then the rotary electrode is inserted into the cooling hole and generates an electrospark between rotary ESD electrode and the substrate to form a rounded edge and deposit a coating of electrode material alloy at a cooling hole edge.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 20, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Dechao LIN, Ibrahim UCOK, Kivilcim ONAL
  • Patent number: 8590315
    Abstract: A turbomachine includes a compressor, a turbine, and a combustor operatively coupled to the compressor and the turbine. The combustor includes a combustor casing having a flange, an outer surface and an inner surface that defines an internal passage. The combustor casing includes an extruded fluid manifold mounted to the outer surface. The extruded fluid manifold includes first and second walls integrally formed with a third, connecting, wall. The first wall includes a first mounting element and the second wall includes a second mounting element. The first mounting element extends axially along the combustor casing away from the first wall and the second mounting element extends axially along the combustor casing away from the second wall and the first mounting element. The extruded fluid manifold is joined to the outer surface of the combustor casing through the first and second mounting elements.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: November 26, 2013
    Assignee: General Electric Company
    Inventors: Brandon Taylor Overby, Jason Allen Seale, Ibrahim Ucok
  • Patent number: 8568826
    Abstract: A method for brazing a component in a power generation system, the brazed power generation system component, and braze are provided to improve repairing power generation systems. The method includes providing the component having a feature in a surface of the component and coating a particulate material with a filler material to obtain a coated particulate material. The method includes preparing the feature to obtain a treatment area and filling the treatment area in the surface of the component with the coated particulate material. The method includes heating the treatment area and surrounding component to a brazing temperature and applying oxidation protection to the treatment area. After the brazing temperature is obtained, the method includes brazing the treatment area and the screen and cooling the component to obtain a brazed joint.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: October 29, 2013
    Assignee: General Electric Company
    Inventors: Junyoung Park, Jason Robert Parolini, Ibrahim Ucok, Brian Lee Tollison, Stephen Walcott, Jon Conrad Schaeffer
  • Publication number: 20130216813
    Abstract: Casting preforms are provided comprising a casting preform assembly; and a plurality of geometrically shaped bodies, wherein the plurality of geometrically shaped bodies are arranged or interconnected to form the casting preform assembly. Also provided is a method of using a casting preform, comprising forming a casting preform assembly, wherein the casting preform assembly comprises a plurality of geometrically shaped bodies; anchoring the casting preform to an outer surface of a casting mold; introducing a fluid casting material into the casting mold; applying centrifugal force to the casting mold; forming a molded article, wherein at least a portion of the surface of the molded article is reinforced with the plurality of geometrically shaped bodies.
    Type: Application
    Filed: February 22, 2012
    Publication date: August 22, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ibrahim Ucok, Junyoung Park, Jason Robert Parolini
  • Publication number: 20130156637
    Abstract: A method for making an equiaxed investment casting. The method utilizes an ultrasonic generator to send an ultrasonic pulse into molten metal in an investment casting mold. The investment casting mold is positioned within a working zone of furnace having low output induction coils for generating a convection current in molten metal. The ultrasonic pulse separates dendrites growing from the face of the mold inward into the molten metal. Instead, equiaxed grains can nucleate within the molten metal. In addition, the ultrasonic pulse and the low output induction coils circulate the molten metal as solute is rejected from solidifying equiaxed grains. The mixing reduces the effects of segregation in the solidifying alloy and assists in nucleating equiaxed grains.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Junyoung PARK, Jason Robert PAROLINI, Ibrahim UCOK