Patents by Inventor Ichiro Omura

Ichiro Omura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5962893
    Abstract: An n-semiconductor layer is arranged on a low-resistance n-substrate. A drain electrode is in ohmic contact with the n-substrate. A source electrode forms a Schottky junction with the n-semiconductor layer. A gate electrode is arranged adjacent to the source electrode on the n-semiconductor layer through a gate insulating film. When a voltage is applied to the gate electrode to lower the Schottky barrier height at the interface between the source electrode and the n-semiconductor layer, electrons are injected from the source electrode into the n-semiconductor layer, and a current flows in the semiconductor device. A diffusion layer which prevents a decrease in manufacturing time is not required to form in the n-semiconductor layer, and a channel which causes an increase in ON state voltage is not present.
    Type: Grant
    Filed: January 16, 1996
    Date of Patent: October 5, 1999
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichiro Omura, Takashi Shinohe
  • Patent number: 5883402
    Abstract: A semiconductor device comprises a main switching element, an electric field detector and an on-voltage application unit. The main switching element includes a high-voltage main electrode, at least a low-voltage main electrode and at least a first gate electrode. The electric field detector has a MOS structure making conductive between the high-voltage main electrode and the first gate electrode in a path other than the main switching element in accordance with a predetermined electric field generated in the main switching element. The on-voltage application unit applies an on-voltage to the first gate electrode on the basis of the conductive state.
    Type: Grant
    Filed: November 5, 1996
    Date of Patent: March 16, 1999
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichiro Omura, Tsuneo Ogura, Kenichi Matsushita, Hideaki Ninomiya
  • Patent number: 5838026
    Abstract: An insulated-gate semiconductor device comprises a P type emitter layer, an N.sup.- high-resistive base layer formed on the P type emitter layer, and a P type base layer contacting the N.sup.- high-resistive base layer. A plurality of trenches are formed having a depth to reach into the N.sup.- high-resistive base layer from the P type base layer. A gate electrode covered with a gate insulation film is buried in each trench. An N type source layer to be connected to a cathode electrode is formed in the surface of the P type base layer in a channel region between some trenches, thereby forming an N channel MOS transistor for turn-on operation. A P channel MOS transistor connected to the P base layer is formed in a channel region between other trenches so as to discharge the holes outside the device upon turn-off operation.
    Type: Grant
    Filed: March 28, 1997
    Date of Patent: November 17, 1998
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mitsuhiko Kitagawa, Ichiro Omura, Akio Nakagawa, Norio Yasuhara, Tomoki Inoue
  • Patent number: 5793065
    Abstract: Disclosed herein is an insulated-gate thyristor comprising a base layer of a first conductivity type, having first and second major surfaces, a first main-electrode region of the first conductivity type, formed in the first major surface of the base layer, a second main-electrode region of a second conductivity type, formed in the second major surface of the base layer, at least a pair of grooves extending from the first main-electrode region into the base layer, and opposing each other and spaced apart by a predetermined distance, insulated gate electrodes formed within the grooves, and a turn-off insulated-gate transistor structure for releasing carriers of the second conductivity type from the base layer.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 11, 1998
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Shinohe, Kazuya Nakayama, Minami Takeuchi, Masakazu Yamaguchi, Mitsuhiko Kitagawa, Ichiro Omura, Akio Nakagawa
  • Patent number: 5714775
    Abstract: A p-type emitter layer having a low resistivity is arranged on a bottom surface of an n-type base layer having a high resistivity. A p-type base layer is formed in a top surface of the n-type base layer. Trenches are formed in the p-type base layer and the n-type base layer such that each trench penetrates the p-type base layer and reaches down to a halfway depth in the n-type base layer. Inter-trench regions made of semiconductor are defined between the trenches. An n-type emitter layer having a low resistivity is formed in a surface of the p-type base layer to be in contact with the upper part of each trench. A gate electrode is buried via a gate insulating film in each trench. That side surface of each inter-trench region which faces the gate electrode consists of a {100} plane.
    Type: Grant
    Filed: April 19, 1996
    Date of Patent: February 3, 1998
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoki Inoue, Ichiro Omura, Hiromichi Ohashi
  • Patent number: 5689121
    Abstract: An insulated-gate semiconductor device comprises a P type emitter layer, an N.sup.- high-resistive base layer formed on the P type emitter layer, and a P type base layer contacting the N.sup.- high-resistive base layer. A plurality of trenches are formed having a depth to reach into the N.sup.- high-resistive base layer from the P type base layer. A gate electrode covered with a gate insulation film is buried in each trench. An N type source layer to be connected to a cathode electrode is formed in the surface of the P type base layer in a channel region between some trenches, thereby forming an N channel MOS transistor for turn-on operation. A P channel MOS transistor connected to the P base layer is formed in a channel region between other trenches so as to discharge the holes outside the device upon turn-off operation.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 18, 1997
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mitsuhiko Kitagawa, Ichiro Omura, Akio Nakagawa, Norio Yasuhara, Tomoki Inoue
  • Patent number: 5640040
    Abstract: A high breakdown voltage semiconductor device comprising a semiconductor substrate, an insulating layer formed on the semiconductor substrate, an active layer formed on the insulating layer and made of a high resistance semiconductor of a first conductivity type, a first impurity region of the first conductivity type formed in the active layer, and a second impurity region of a second conductivity type formed in the active layer and spaced apart from the first impurity region by a predetermined distance. The first impurity region is formed of diffusion layers. The diffusion layers are superimposed one upon another and differ in diffusion depth or diffusion window width, or both.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 17, 1997
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akio Nakagawa, Norio Yasuhara, Tomoko Matsudai, Yoshihiro Yamaguchi, Ichiro Omura, Hideyuki Funaki
  • Patent number: 5637909
    Abstract: A bipolar transistor is formed on a silicon substrate having a silicon oxide film. An n-silicon layer having a top surface of a (100) plane is formed on the silicon oxide film and is used as a collector layer. An end face constituted by a (111) plane is formed on the end portion of the collector layer by etching, using an aqueous KOH solution. A B-doped p-silicon layer is formed on the end face by epitaxial growth and is used as a base layer. Furthermore, an As-doped n-silicon layer is formed on the base layer and is used as an emitter layer. Electrodes are respectively connected to the collector, base, and emitter layers.
    Type: Grant
    Filed: January 2, 1996
    Date of Patent: June 10, 1997
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroomi Nakajima, Yasuhiro Katsumata, Hiroshi Iwai, Toshihiko Iinuma, Kazumi Inou, Mitsuhiko Kitagawa, Kouhei Morizuka, Akio Nakagawa, Ichiro Omura
  • Patent number: 5592014
    Abstract: A high breakdown voltage semiconductor apparatus comprises a substrate having an insulating layer formed thereon, a high resistance semiconductor layer of a first conductivity type formed on said insulating layer, a base region of the first conductivity type formed selectively in a surface region of the high resistance semiconductor layer, a drift region of a second conductivity type formed selectively in the surface region of the high resistance semiconductor layer so as not to reach the insulating layer, a source region of the second conductivity type formed in the base region, a drain region formed in the drift region, a gate electrode formed on a region between the source region and the drift region, with a gate insulating film interposed between the gate electrode and the region between the source region and the drift region, a source electrode provided in contact with the base region and the source region, a drain electrode provided in contact with the drain region.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: January 7, 1997
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideyuki Funaki, Akio Nakagawa, Norio Yasuhara, Tomoko Matsudai, Yoshihiro Yamaguchi, Ichiro Omura
  • Patent number: 5585651
    Abstract: An insulated-gate semiconductor device comprises a p type emitter layer, an N.sup.- high-resistive base layer formed on the P type emitter layer, and a P type base layer contacting the N.sup.- high-resistive base layer. A plurality of trenches are formed having a depth to reach into the N.sup.- high-resistive base layer from the P type base layer. A gate electrode covered with a gate insulation film is buried in each trench. An N type source layer to be connected to a cathode electrode is formed in the surface of the P type base layer in a channel region between some trenches, thereby forming an N channel MOS transistor for turn-on operation. A P channel MOS transistor connected to the P base layer is formed in a channel region between other trenches so as to discharge the holes outside the device upon turn-off operation.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 17, 1996
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mitsuhiko Kitagawa, Ichiro Omura, Akio Nakagawa, Norio Yasuhara, Tomoki Inoue
  • Patent number: 5554862
    Abstract: In a power semiconductor device, an n-base is formed on a p-emitter layer. On the n-base layer, a p-base layer, an n-emitter layer, and a high-concentration p-layer are formed laterally. In the p-base layer, an n-source layer is formed a specified distance apart from the n-emitter layer. In the n-emitter layer, a p-source layer is formed a specified distance apart from the high-concentration p-layer. A first gate electrode is formed via a first gate insulating film on the region sandwiched by the n-source layer and the n-emitter layer. A second gate electrode is formed via a second gate insulating film on the region sandwiched by the high-concentration p-layer and the p-source layer. On the p-emitter layer, a first main electrode is formed. A second main electrode is formed so as to be in contact with the p-base layer, the n-source layer, and the p-source layer.
    Type: Grant
    Filed: January 19, 1994
    Date of Patent: September 10, 1996
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichiro Omura, Mitsuhiko Kitagawa, Kazuya Nakayama, Masakazu Yamaguchi
  • Patent number: 5548150
    Abstract: A high-resistant p-silicon layer is formed on a silicon substrate through a silicon oxide film. N-source and n-drain layers are selectively formed in the surface of the high-resistant p-silicon layer. A gate electrode is formed through a gate insulating film on a channel region between the source and drain layers. To induce an n-inverted layer under the gate electrode, a p-base layer is formed in the high-resistant p-silicon layer. A depletion layer extending from a pn junction between the n-drain layer and the high-resistant p-silicon layer reaches the silicon oxide film in a thermal equilibrium state. Part of the high-resistant p-silicon layer extends into a channel region between the drain and base layers. The drain and base layers are connected to each other through part of the depletion layer in the thermal equilibrium state. A field effect transistor having a high-speed operation is provided.
    Type: Grant
    Filed: April 17, 1995
    Date of Patent: August 20, 1996
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichiro Omura, Akio Nakagawa, Tadashi Sakai, Masayuki Sekimura, Hideyuki Funaki
  • Patent number: 5510647
    Abstract: A bipolar transistor is formed on a silicon substrate having a silicon oxide film. An n-silicon layer having a top surface of a (100) plane is formed on the silicon oxide film and is used as a collector layer. An end face constituted by a (111) plane is formed on the end portion of the collector layer by etching, using an aqueous KOH solution. A B-doped p-silicon layer is formed on the end face by epitaxial growth and is used as a base layer. Furthermore, an As-doped n-silicon layer is formed on the base layer and is used as an emitter layer. Electrodes are respectively connected to the collector, base, and emitter layers.
    Type: Grant
    Filed: March 15, 1994
    Date of Patent: April 23, 1996
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroomi Nakajima, Yasuhiro Katsumata, Hiroshi Iwai, Toshihiko Iinuma, Kazumi Inou, Mitsuhiko Kitagawa, Kouhei Morizuka, Akio Nakagawa, Ichiro Omura
  • Patent number: 5464994
    Abstract: Disclosed herein is an insulated-gate thyristor comprising a base layer of a first conductivity type, having first and second major surfaces, a first main-electrode region of the first conductivity type, formed in the first major surface of the base layer, a second main-electrode region of a second conductivity type, formed in the second major surface of the base layer, at least a pair of grooves extending from the first main-electrode region into the base layer, and opposing each other and spaced apart by a predetermined distance, insulated gate electrodes formed within the grooves, and a turn-off insulated-gate transistor structure for releasing carriers of the second conductivity type from the base layer.
    Type: Grant
    Filed: August 16, 1994
    Date of Patent: November 7, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Shinohe, Kazuya Nakayama, Minami Takeuchi, Masakazu Yamaguchi, Mitsuhiko Kitagawa, Ichiro Omura, Akio Nakagawa
  • Patent number: 5448083
    Abstract: An insulated-gate semiconductor device comprises a P type emitter layer, an N.sup.- high-resistive base layer formed on the P type emitter layer, and a P type base layer contacting the N.sup.- high-resistive base layer. A plurality of trenches are formed having a depth to reach into the N.sup.- high-resistive base layer from the P type base layer. A gate electrode covered with a gate insulation film is buried in each trench. An N type source layer to be connected to a cathode electrode is formed in the surface of the P type base layer in a channel region between some trenches, thereby-forming an N channel MOS transistor for turn-on operation. A P channel MOS transistor connected to the P base layer is formed in a channel region between other trenches so as to discharge the holes outside the device upon turn-off operation.
    Type: Grant
    Filed: June 15, 1994
    Date of Patent: September 5, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mitsuhiko Kitagawa, Ichiro Omura, Akio Nakagawa, Norio Yasuhara, Tomoki Inoue
  • Patent number: 5438220
    Abstract: A high breakdown voltage semiconductor device includes a semiconductor substrate, an insulating layer formed on the semiconductor substrate, an active layer formed on the insulating layer and made of a high resistance semiconductor of a first conductivity type, a first impurity region of the first conductivity type formed in the active layer, and a second impurity region of a second conductivity type formed in the active layer and spaced apart from the first impurity region by a predetermined distance. The first impurity region is formed of diffusion layers. The diffusion layers are superimposed one upon another and differ in diffusion depth or diffusion window width, or both.
    Type: Grant
    Filed: July 2, 1993
    Date of Patent: August 1, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akio Nakagawa, Norio Yasuhara, Tomoko Matsudai, Yoshihiro Yamaguchi, Ichiro Omura, Hideyuki Funaki
  • Patent number: 5381026
    Abstract: Disclosed herein is an insulated-gate thyristor comprising a base layer of a first conductivity type, having first and second major surfaces, a first main-electrode region of the first conductivity type, formed in the first major surface of the base layer, a second main-electrode region of a second conductivity type, formed in the second major surface of the base layer, at least a pair of grooves extending from the first main-electrode region into the base layer, and opposing each other and spaced apart by a predetermined distance, insulated gate electrodes formed within the grooves, and a turn-off insulated-gate transistor structure for releasing carriers of the second conductivity type from the base layer.
    Type: Grant
    Filed: September 16, 1991
    Date of Patent: January 10, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Shinohe, Kazuya Nakayama, Minami Takeuchi, Masakazu Yamaguchi, Mitsuhiko Kitagawa, Ichiro Omura, Akio Nakagawa
  • Patent number: 5329142
    Abstract: A self turn-off power semiconductor device includes a P type emitter layer, a high resistive N type base layer, a P type base layer and a MOS channel structure for injecting electrons into the N type base layer. A series of trench-like grooves are formed in the top surface of a substrate constituting the N type base layer at a constant interval. Insulated gate electrodes are buried in these grooves. The injection efficiency of electrons into the base layer is enhanced by locally controlling the flow of holes in the N type base layer. Controlling the flow of holes is achieved by specifically arranging the width of a hole-bypass path among the grooves, the trench width and the placement distance of the grooves, thereby causing the accumulation of carriers to increase in the base layer to decrease the on-resistance of the device.
    Type: Grant
    Filed: August 7, 1992
    Date of Patent: July 12, 1994
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mitsuhiko Kitagawa, Ichiro Omura
  • Patent number: 5323041
    Abstract: In a high-breakdown-voltage diode, a high-concentration p-type layer is selectively formed in an n-type silicon layer, and a high-concentration n-type layer is formed in the same separate from the layer by a predetermined distance. An insulation film having a dielectric constant larger than silicon is formed on that portion of the n-type silicon layer which extends between the layers, for relaxing concentration of an electric field caused in the surface of the substrate.
    Type: Grant
    Filed: June 19, 1993
    Date of Patent: June 21, 1994
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ken'ichi Matsushita, Ichiro Omura, Akio Nakagawa
  • Patent number: 5298769
    Abstract: A GTO thyristor includes a p-type emitter layer, an n-type base layer, a p-type base layer and an n-type emitter layer. An additional n-type layer is formed on the p-type base layer next to the n-type emitter layer An additional p.sup.+ -type layer is formed on the additional n-type layer and stretches to the n-type emitter layer. An anode electrode and a cathode electrode are disposed respectively on the n-type emitter layer and the p-type base layer. The n-type emitter layer and the additional p.sup.+ -type layer are connected with each other by a floating electrode. A first gate electrode is disposed on the additional p.sup.+ -type layer, additional n-type layer and p-type base layer with an insulating film interposed therebetween so as to form a first FET. A second gate electrode is disposed on the n-type base layer, p-type base layer and n-type emitter layer with an insulating film interposed therebetween so as to form a second FET.
    Type: Grant
    Filed: March 31, 1993
    Date of Patent: March 29, 1994
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichiro Omura, Mitsuhiko Kitagawa