Patents by Inventor Igor Bol

Igor Bol has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170213909
    Abstract: According to an embodiment of a method for fabricating a trench field-effect transistor (trench FET), the method includes: forming a trench in a semiconductor substrate of a first conductivity type, the trench including sidewalls which taper from a wider, top portion of the trench to a narrower, bottom portion of the trench; forming a gate dielectric in the trench, the gate dielectric having substantially the same thickness in the wider, top portion of the trench as in the narrower, bottom portion of the trench; forming a gate electrode in the trench and separated from the semiconductor substrate by the gate dielectric; and forming a channel region of a second conductivity type in the semiconductor substrate after forming the trench and the gate dielectric, the channel region being disposed adjacent the trench. Trench FETs formed by the method are also disclosed.
    Type: Application
    Filed: April 10, 2017
    Publication date: July 27, 2017
    Inventors: Timothy D. Henson, Ling Ma, Hugo Burke, David P. Jones, Kapil Kelkar, Niraj Ranjan, Igor Bol
  • Patent number: 9653597
    Abstract: Disclosed is a method for fabricating a shallow and narrow trench field-effect transistor (trench FET). The method includes forming a trench within a semiconductor substrate of a first conductivity type, the trench including sidewalls and a bottom portion. The method further includes forming a substantially uniform gate dielectric in the trench, and forming a gate electrode within said trench and over said gate dielectric. The method also includes doping the semiconductor substrate to form a channel region of a second conductivity type after forming the trench. In one embodiment, the doping step is performed after forming the gate dielectric and after forming the gate electrode. In another embodiment, the doping step is performed after forming the gate dielectric, but prior to forming the gate electrode. Structures formed by the invention's method are also disclosed.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: May 16, 2017
    Assignee: Infineon Technologies Americas Corp.
    Inventors: Timothy D. Henson, Ling Ma, Hugo Burke, David P. Jones, Kapil Kelkar, Niraj Ranjan, Igor Bol
  • Patent number: 8735294
    Abstract: A vertically arranged laterally diffused metal-oxide-semiconductor (LDMOS) device includes a trench extending into a semiconductor body toward a semiconductor substrate. The trench includes sidewalls, a bottom portion connecting the sidewalls, a dielectric material lining the trench and a diffusion agent layer lining the dielectric material. A lightly doped drain region adjoins the trench and extends laterally around the sidewalls from the diffusion agent layer into the semiconductor body. In one implementation, a method for fabricating a vertically arranged LDMOS device includes forming a trench extending into a semiconductor body toward a semiconductor substrate, the trench including sidewalls, a bottom portion connecting the sidewalls, a dielectric material lining the trench and a diffusion agent layer lining the dielectric material.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: May 27, 2014
    Assignee: International Rectifier Corporation
    Inventor: Igor Bol
  • Patent number: 8420505
    Abstract: A process to thin semiconductor wafers to less than 50 microns employs a dissolvable photoresist or polyimide or other glue material to hold a thick carrier plate such as a perforated glass to the top surface of a thick processed wafer and to grind or otherwise remove the bulk of the wafer from its rear surface, leaving only the preprocessed top surface, which may include semiconductor device diffusions and electrodes. A thick metal such as copper or a more brittle copper alloy is then conductively secured to the ground back surface and the glue is dissolved and the carrier plate is removed. The wafer is then cleaned and diced into plural devices such as MOSFETs; integrated circuits and the like.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: April 16, 2013
    Assignee: International Rectifier Corporation
    Inventor: Igor Bol
  • Patent number: 8299527
    Abstract: A vertically arranged laterally diffused metal-oxide-semiconductor (LDMOS) device comprises a trench extending into a semiconductor body toward a semiconductor substrate. The trench includes sidewalls, a bottom portion connecting the sidewalls, a dielectric material lining the trench and a diffusion agent layer lining the dielectric material. A lightly doped drain region adjoins the trench and extends laterally around the sidewalls from the diffusion agent layer into the semiconductor body. In one embodiment, a method for fabricating a vertically arranged LDMOS device comprises forming a trench extending into a semiconductor body toward a semiconductor substrate, the trench including sidewalls, a bottom portion connecting the sidewalls, a dielectric material lining the trench and a diffusion agent layer lining the dielectric material.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: October 30, 2012
    Assignee: International Rectifier Corporation
    Inventor: Igor Bol
  • Publication number: 20110272759
    Abstract: A vertically arranged laterally diffused metal-oxide-semiconductor (LDMOS) device comprises a trench extending into a semiconductor body toward a semiconductor substrate. The trench includes sidewalls, a bottom portion connecting the sidewalls, a dielectric material lining the trench and a diffusion agent layer lining the dielectric material. A lightly doped drain region adjoins the trench and extends laterally around the sidewalls from the diffusion agent layer into the semiconductor body. In one embodiment, a method for fabricating a vertically arranged LDMOS device comprises forming a trench extending into a semiconductor body toward a semiconductor substrate, the trench including sidewalls, a bottom portion connecting the sidewalls, a dielectric material lining the trench and a diffusion agent layer lining the dielectric material.
    Type: Application
    Filed: May 6, 2010
    Publication date: November 10, 2011
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventor: Igor Bol
  • Patent number: 7944035
    Abstract: A semiconductor die has devices such as MOSgated devices, diodes and the like formed into the top and bottom surfaces of the die. One terminal of each of the devices terminal in the interior center of the die and a common contact is made to the interior center of the die at one edge of the die. Various packages for the die having a reduced foot print on a support substrate are disclosed.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: May 17, 2011
    Assignee: International Rectifier Corporation
    Inventor: Igor Bol
  • Publication number: 20100314695
    Abstract: In one embodiment a self-aligned vertical group III-V transistor comprises a group III-V layer having a first conductivity type formed over a group III-V drift body having a second conductivity type opposite the first conductivity type, a pinch-off region formed by dopant implantation of the group III-V layer. The pinch-off region is doped so as to have the second conductivity type, and extends through the group III-V layer to the group III-V drift body. The self-aligned vertical group III-V transistor also comprises a pinch-off insulation body formed over the pinch-off region, the pinch-off region and the pinch-off insulation body being self-aligned. In one embodiment, the present invention may take the form of a self-aligned vertical N-channel field-effect transistor (FET) in gallium nitride GaN.
    Type: Application
    Filed: June 10, 2009
    Publication date: December 16, 2010
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventor: Igor Bol
  • Patent number: 7462908
    Abstract: A vertical conduction trench FET has a plurality of trenches containing conductive polysilicon gates. The mesas between the trenches have a source diffusion region connected to a common source electrode. The trenches are spaced so that the depletion regions induced by the trench gate will overlap to pinch off conduction through the mesa to turn off the device. The gate potential is pulsed. The polysilicon in the trenches may be separated into two insulated portions. The pulses may be applied simultaneously or sequentially to the polysilicon gates.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: December 9, 2008
    Assignee: International Rectifier Corporation
    Inventors: Igor Bol, Xin Li
  • Publication number: 20080014439
    Abstract: A process to thin semiconductor wafers to less than 50 microns employs a dissolvable photoresist or polyimide or other glue material to hold a thick carrier plate such as a perforated glass to the top surface of a thick processed wafer and to grind or otherwise remove the bulk of the wafer from its rear surface, leaving only the preprocessed top surface, which may include semiconductor device diffusions and electrodes. A thick metal such as copper or a more brittle copper alloy is then conductively secured to the ground back surface and the glue is dissolved and the carrier plate is removed. The wafer is then cleaned and diced into plural devices such as MOSFETs; integrated circuits and the like.
    Type: Application
    Filed: March 26, 2007
    Publication date: January 17, 2008
    Inventor: Igor Bol
  • Patent number: 7319059
    Abstract: A method for manufacturing a power semiconductor device which includes forming a semiconductor region such as a polysilicon layer or epitaxially grown silicon over a region implanted with source implants and applying heat in a thermal step to cause the source implants to diffuse into the semiconductor region.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: January 15, 2008
    Assignee: International Rectifier Corporation
    Inventor: Igor Bol
  • Publication number: 20070273016
    Abstract: A semiconductor die has devices such as MOSgated devices, diodes and the like formed into the top and bottom surfaces of the die. One terminal of each of the devices terminal in the interior center of the die and a common contact is made to the interior center of the die at one edge of the die. Various packages for the die having a reduced foot print on a support substrate are disclosed.
    Type: Application
    Filed: May 16, 2007
    Publication date: November 29, 2007
    Inventor: Igor Bol
  • Publication number: 20060172487
    Abstract: A method for manufacturing a power semiconductor device which includes forming a semiconductor region such as a polysilicon layer or epitaxially grown silicon over a region implanted with source implants and applying heat in a thermal step to cause the source implants to diffuse into the semiconductor region.
    Type: Application
    Filed: January 31, 2005
    Publication date: August 3, 2006
    Inventor: Igor Bol
  • Publication number: 20060017100
    Abstract: A vertical conduction trench FET has a plurality of trenches containing conductive polysilicon gates. The mesas between the trenches have a source diffusion region connected to a common source electrode. The trenches are spaced so that the depletion regions induced by the trench gate will overlap to pinch off conduction through the mesa to turn off the device. The gate potential is pulsed. The polysilicon in the trenches may be separated into two insulated portions. The pulses may be applied simultaneously or sequentially to the polysilicon gates.
    Type: Application
    Filed: July 14, 2005
    Publication date: January 26, 2006
    Inventors: Igor Bol, Xin Li
  • Patent number: 6858499
    Abstract: An insulation is formed on a substrate of a material having a first conductivity type. A gate material is formed on the insulation. A portion of the gate material is removed thereby creating forming mesa type gate structures from remaining positions of the gate material. The mesas are then insulated. A channel forming layer, of a material having a second conductivity type, is formed between the produced mesas. Finally, a source of a material having the first conductivity type is formed on the channel forming layer.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: February 22, 2005
    Assignee: International Rectifier Corporation
    Inventor: Igor Bol
  • Publication number: 20040191971
    Abstract: An insulation is formed on a substrate of a material having a first conductivity type. A gate material is formed on the insulation. A portion of the gate material is removed thereby creating forming mesa type gate structures from remaining positions of the gate material. The mesas are then insulated. A channel forming layer, of a material having a second conductivity type, is formed between the produced mesas. Finally, a source of a material having the first conductivity type is formed on the channel forming layer.
    Type: Application
    Filed: March 31, 2003
    Publication date: September 30, 2004
    Applicant: International Rectifier Corporation
    Inventor: Igor Bol
  • Patent number: 6699775
    Abstract: A termination structure and reduced mask process for its manufacture for either a FRED device or any power semiconductor device comprises at least two concentric diffusion guard rings and two spaced silicon dioxide rings used in the definition of the two guard rings. A first metal ring overlies and contacts the outermost diffusion. A second metal ring which acts as a field plate contacts the second diffusion and overlaps the outermost oxide ring. A third metal ring, which acts as a field plate, is a continuous portion of the active area top contact and overlaps the second oxide ring. The termination is useful for high voltage (of the order of 1200 volt) devices. The rings are segments of a common aluminum or Palladium contact layer.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: March 2, 2004
    Assignee: International Rectifier Corporation
    Inventors: Igor Bol, Iftikhar Ahmed
  • Patent number: 6656843
    Abstract: A single mask process is described for making a trench type fast recovery process. The single mask defines slots in a photoresist for locally removing strips of nitride and oxide from atop silicon and for subsequently etching trenches in the silicon. A boron implant is carried out in the bottoms of the trenches to form local P/N junctions. The oxide beneath the nitride is then fully stripped in the active area and only partly stripped in the termination area in which the trenches are wider spaced than in the active area. Aluminum is then deposited atop the active area and in the trenches, but is blocked from contact with silicon in the active area by the remaining nitride layer.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: December 2, 2003
    Assignee: International Rectifier Corporation
    Inventor: Igor Bol
  • Publication number: 20030203533
    Abstract: A single mask process is described for making a trench type fast recovery process. The single mask defines slots in a photoresist for locally removing strips of nitride and oxide from atop silicon and for subsequently etching trenches in the silicon. A boron implant is carried out in the bottoms of the trenches to form local P/N junctions. The oxide beneath the nitride is then fully stripped in the active area and only partly stripped in the termination area in which the trenches are wider spaced than in the active area. Aluminum is then deposited atop the active area and in the trenches, but is blocked from contact with silicon in the active area by the remaining nitride layer.
    Type: Application
    Filed: April 25, 2002
    Publication date: October 30, 2003
    Applicant: International Rectifier Corp.
    Inventor: Igor Bol
  • Patent number: 6570218
    Abstract: An insulation is formed on a substrate of a material having a first conductivity type. A gate material is formed on the insulation. A portion of the gate material is removed thereby creating forming mesa type gate structures from remaining positions of the gate material. The mesas are then insulated. A channel forming layer, of a material having a second conductivity type, is formed between the produced mesas. Finally, a source of a material having the first conductivity type is formed on the channel forming layer.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: May 27, 2003
    Assignee: International Rectifier Corporation
    Inventor: Igor Bol