Patents by Inventor Igor C. Ivanov

Igor C. Ivanov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110014489
    Abstract: A method is provided which includes forming a metal layer and converting at least a portion of the metal layer to a hydrated metal oxide layer. Another method is provided which includes selectively depositing a dielectric layer upon another dielectric layer and selectively depositing a metal layer adjacent to the dielectric layer. Consequently, a microelectronic topography is formed which includes a metal feature and an adjacent dielectric portion comprising lower and upper layers of hydrophilic and hydrophobic material, respectively. A topography including a metal feature having a single layer with at least four elements lining a lower surface and sidewalls of the metal feature is also provided herein. The fluid/s used to form such a single layer may be analyzed by test equipment configured to measure the concentration of all four elements. In some cases, the composition of the fluid/s may be adjusted based upon the analysis.
    Type: Application
    Filed: September 24, 2010
    Publication date: January 20, 2011
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Igor C. Ivanov, Weiguo Zhang, Artur Kolics
  • Publication number: 20100279071
    Abstract: A method is provided which includes dispensing a deposition solution at a plurality of locations extending different distances from a center of a microelectronic topography each at different moments in time during an electroless plating process. An electroless plating apparatus used for the method includes a substrate holder, a movable dispense arm, and a storage medium comprising program instructions executable by a processor for positioning the movable dispense arm. Another method and accompanying electroless deposition chamber are configured to introduce a gas into an electroless plating chamber above a plate which is suspended above a microelectronic topography and distribute the gas to regions extending above one or more discrete portions of the microelectronic topography.
    Type: Application
    Filed: July 19, 2010
    Publication date: November 4, 2010
    Applicant: LAM RESEARCH CORPORATION
    Inventor: Igor C. Ivanov
  • Publication number: 20100279002
    Abstract: A method is provided which includes dispensing a deposition solution at a plurality of locations extending different distances from a center of a microelectronic topography each at different moments in time during an electroless plating process. An electroless plating apparatus used for the method includes a substrate holder, a moveable dispense arm, and a storage medium comprising program instructions executable by a processor for positioning the moveable dispense arm. Another method and accompanying electroless deposition chamber are configured to introduce a gas into an electroless plating chamber above a plate which is suspended above a microelectronic topography and distribute the gas to regions extending above one or more discrete portions of the microelectronic topography.
    Type: Application
    Filed: July 19, 2010
    Publication date: November 4, 2010
    Applicant: LAM RESEARCH CORPORATION
    Inventor: Igor C. Ivanov
  • Patent number: 7779782
    Abstract: A method is provided which includes dispensing a deposition solution at a plurality of locations extending different distances from a center of a microelectronic topography each at different moments in time during an electroless plating process. An electroless plating apparatus used for the method includes a substrate holder, a moveable dispense arm, and a storage medium comprising program instructions executable by a processor for positioning the moveable dispense arm. Another method and accompanying electroless deposition chamber are configured to introduce a gas into an electroless plating chamber above a plate which is suspended above a microelectronic topography and distribute the gas to regions extending above one or more discrete portions of the microelectronic topography.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: August 24, 2010
    Assignee: Lam Research
    Inventor: Igor C. Ivanov
  • Publication number: 20100159208
    Abstract: A microelectronic topography includes a dielectric layer (DL) with a surface higher than an adjacent bulk metal feature (BMF) and further includes a barrier layer (BL) upon the BMF and extending higher than the DL. Another microelectronic topography includes a BL with a metal-oxide layer having a metal element concentration which is disproportionate relative to concentrations of the element within metal alloy layers on either side of the metal-oxide layer. A method includes forming a BL upon a BMF such that portions of a first DL adjacent to the BMF are exposed, selectively depositing a second DL upon the BL, cleaning the topography thereafter, and blanket depositing a third DL upon the cleaned topography. Another method includes polishing a microelectronic topography such that a metallization layer is coplanar with a DL and further includes spraying a deionized water based fluid upon the polished topography to remove debris from the DL.
    Type: Application
    Filed: March 8, 2010
    Publication date: June 24, 2010
    Applicant: Lam Research
    Inventor: Igor C. Ivanov
  • Patent number: 7714441
    Abstract: A microelectronic topography includes a dielectric layer (DL) with a surface higher than an adjacent bulk metal feature (BMF) and further includes a barrier layer (BL) upon the BMF and extending higher than the DL. Another microelectronic topography includes a BL with a metal-oxide layer having a metal element concentration which is disproportionate relative to concentrations of the element within metal alloy layers on either side of the metal-oxide layer. A method includes forming a BL upon a BMF such that portions of a first DL adjacent to the BMF are exposed, selectively depositing a second DL upon the BL, cleaning the topography thereafter, and blanket depositing a third DL upon the cleaned topography. Another method includes polishing a microelectronic topography such that a metallization layer is coplanar with a DL and further includes spraying a deionized water based fluid upon the polished topography to remove debris from the DL.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: May 11, 2010
    Assignee: Lam Research
    Inventor: Igor C. Ivanov
  • Publication number: 20100055300
    Abstract: An apparatus for processing microelectronic topographies, a method of use of such an apparatus, and a method for passivating hardware of microelectronic processing chambers are provided. The apparatus includes a substrate holder configured to support a microelectronic topography and a rotatable case with sidewalls arranged on opposing sides of the substrate holder. The method of using such an apparatus includes positioning a microelectronic topography upon a substrate holder of a processing chamber, exposing the microelectronic topography to a fluid within the processing chamber, and rotating a case of the processing chamber. The rotation is sufficient to affect movement of the fluid relative to the surface of the microelectronic topography. A method for passivating hardware of a microelectronic processing chamber includes exposing the hardware to an organic compound and subsequently exposing the hardware to an agent configured to form polar bonds with the organic compound.
    Type: Application
    Filed: November 11, 2009
    Publication date: March 4, 2010
    Applicant: LAM RESEARCH CORPORATION
    Inventor: Igor C. Ivanov
  • Patent number: 7651723
    Abstract: A process chamber is provided which includes a gate configured to align barriers with an opening of the gate and an opening of the process chamber such that the two openings are either sealed or provide an air passage to the chamber. A method is provided and includes sealing an opening of a chamber with a gate latch and exposing a topography to a first set of process steps, opening the gate latch such that an air passage is provided to the process chamber, and exposing the topography to a second set of process steps without allowing liquids within the chamber to flow through the air passage. A substrate holder comprising a clamping jaw with a lever and a support member coupled to the lever is also contemplated herein. A process chamber with a reservoir arranged above a substrate holder is also provided herein.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: January 26, 2010
    Assignee: Lam Research Corporation
    Inventors: Igor C. Ivanov, Weiguo Zhang
  • Patent number: 7648913
    Abstract: A film formation method is provided which includes positioning an object within an electroless deposition apparatus having means for instantaneous temperature control of the object and electrolessly depositing a material upon the object. More specifically, the method includes instantaneously changing the temperature of the object by the means of instantaneous control at one or more predetermined times during the step of electrolessly depositing the material, wherein the predetermined times correspond to different film-growth stages of the material.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: January 19, 2010
    Assignee: Lam Research Corporation
    Inventor: Igor C. Ivanov
  • Patent number: 7636234
    Abstract: An apparatus for processing microelectronic topographies, a method of use of such an apparatus, and a method for passivating hardware of microelectronic processing chambers are provided. The apparatus includes a substrate holder configured to support a microelectronic topography and a rotatable case with sidewalls arranged on opposing sides of the substrate holder. The method of using such an apparatus includes positioning a microelectronic topography upon a substrate holder of a processing chamber, exposing the microelectronic topography to a fluid within the processing chamber, and rotating a case of the processing chamber. The rotation is sufficient to affect movement of the fluid relative to the surface of the microelectronic topography. A method for passivating hardware of a microelectronic processing chamber includes exposing the hardware to an organic compound and subsequently exposing the hardware to an agent configured to form polar bonds with the organic compound.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: December 22, 2009
    Assignee: Lam Research Corporation
    Inventor: Igor C. Ivanov
  • Patent number: 7393414
    Abstract: Methods and systems are provided which are adapted to process a microelectronic topography, particularly in association with an electroless deposition process. In general, the methods may include loading the topography into a chamber, closing the chamber to form an enclosed area, and supplying fluids to the enclosed area. In some embodiments, the fluids may fill the enclosed area. In addition or alternatively, a second enclosed area may be formed about the topography. As such, the provided system may be adapted to form different enclosed areas about a substrate holder. In some cases, the method may include agitating a solution to minimize the accumulation of bubbles upon a wafer during an electroless deposition process. As such, the system provided herein may include a means for agitating a solution in some embodiments. Such a means for agitation may be distinct from the inlet/s used to supply the solution to the chamber.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: July 1, 2008
    Assignee: Lam Research Corporation
    Inventors: Igor C. Ivanov, Weiguo Zhang
  • Patent number: 7235483
    Abstract: The method of the invention comprises accumulating experimental data or obtaining existing data with regard to the optimal time-temperature relationship of the deposition process on various film-formation stages for various materials, forming nuclei of a selected material on the surface of the treated object in the first stage under first temperature-controlled conditions for the formation of nuclei of said selected material, converting the nuclei of the aforementioned selected material into island-structured deposited layer of said material by causing lateral growth of the nuclei under second temperature-controlled conditions; converting the island-structure layer into a continuously interconnected cluster structure by causing further lateral growth of said island-structured deposited layer under third temperature-controlled conditions; forming a first continuous film of said material under fourth temperature controlled conditions which provides said first continuous film with predetermined properties; and t
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: June 26, 2007
    Assignee: Blue29 LLC
    Inventor: Igor C. Ivanov
  • Patent number: 6935638
    Abstract: A universal substrate holder of the invention for treating wafer substrates in liquids is provided with a shaft and a rod slidingly inserted into the central opening of the shaft. The end of the shaft that protrudes into the bowl supports a base platform for the substrate, while the end of the rod that protrudes into the bowl has radial arms that rigidly support an annular plate with pins that can pass through the opening of the base platform so that they can support the substrate above the surface of the platform. The annular plate supports clamping jaws made in the form of two-arm levers with shorter arms and longer arms. The longer arms are heavier and therefore in the stationary state of the holder keep the jaws turned into an open position. When the shaft begins to rotate, the jaws are turned under the effect of centrifugal forces into positions of clamping the substrate with the shorter arms.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: August 30, 2005
    Assignee: Blue29, LLC
    Inventors: Igor C. Ivanov, Jonathan Weiguo Zhang
  • Patent number: 6911067
    Abstract: An electroless deposition solution of the invention for forming an alkali-metal-free coating on a substrate comprises a first-metal ion source for producing first-metal ions, a pH adjuster in the form of a hydroxide for adjusting the pH of the solution, a reducing agent, which reduces the first-metal ions into the first metal on the substrate, a complexing agent for keeping the first-metal ions in the solution, and a source of ions of a second element for generation of second-metal ions that improve the corrosion resistance of the aforementioned coating.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: June 28, 2005
    Assignee: Blue29, LLC
    Inventors: Artur Kolics, Nicolai Petrov, Chiu Ting, Igor C. Ivanov
  • Patent number: 6908512
    Abstract: A substrate holder has a disk-like body with a central recess having diameter smaller than the diameter of the substrate placed onto the upper surface of the holder. The substrate can be clamped in place by the clamps of the edge-grip mechanism or placed into a seat without the use of clamps. In both cases, the substrate forms a partial wall that confines the heating/cooling recess or chamber. The aforementioned recess is filled with a cooling or heating liquid (depending on the mode of metal deposition) selectively supplied from a liquid heating or cooling system. In order to ensure in the working chamber above the substrate a pressure slightly higher than the pressure in the cooling/heating recess, the working chamber is first filled with the working solution under the atmospheric pressure, and then the recess is filled with a heating or cooling liquid with simultaneous increase of pressure in the working chamber to a level slightly exceeding the pressure in the recess.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: June 21, 2005
    Assignee: Blue29, LLC
    Inventors: Igor C. Ivanov, Jonathan Weiguo Zhang, Artur Kolics
  • Patent number: 6881437
    Abstract: Methods and systems are provided which are adapted to process a microelectronic topography, particularly in association with an electroless deposition process. In general, the methods may include loading the topography into a chamber, closing the chamber to form an enclosed area, and supplying fluids to the enclosed area. In some embodiments, the fluids may fill the enclosed area. In addition or alternatively, a second enclosed area may be formed about the topography. As such, the provided system may be adapted to form different enclosed areas about a substrate holder. In some cases, the method may include agitating a solution to minimize the accumulation of bubbles upon a wafer during an electroless deposition process. As such, the system provided herein may include a means for agitating a solution in some embodiments. Such a means for agitation may be distinct from the inlet/s used to supply the solution to the chamber.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: April 19, 2005
    Assignee: Blue29 LLC
    Inventors: Igor C. Ivanov, Weiguo Zhang
  • Patent number: 6860944
    Abstract: A process chamber is provided which includes a gate configured to align barriers with an opening of the gate and an opening of the process chamber such that the two openings are either sealed or provide an air passage to the chamber. A method is provided and includes sealing an opening of a chamber with a gate latch and exposing a topography to a first set of process steps, opening the gate latch such that an air passage is provided to the process chamber, and exposing the topography to a second set of process steps without allowing liquids within the chamber to flow through the air passage. A substrate holder comprising a clamping jaw with a lever and a support member coupled to the lever is also contemplated herein. A process chamber with a reservoir arranged above a substrate holder is also provided herein.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: March 1, 2005
    Assignee: Blue29 LLC
    Inventors: Igor C. Ivanov, Welguo Zhang
  • Patent number: 6846519
    Abstract: The method for electroless deposition of a coating material, which may be a metal, semiconductor, or dielectric, that is carried out at a relatively low temperature of the working solution compensated by an increased temperature on the substrate which is controlled by a heater built into the substrate chuck. A decrease in the temperature of the working solution prevents thermal decomposition of the solution and reduces formation of gas bubbles, normally generated at increased temperatures. Accumulation of bubbles on the surface of the substrate is further prevented due to upwardly-facing orientation of the treated surface of the substrate. The substrate holder is equipped with a substrate heater and a substrate cooler, that can be used alternatingly for quick heating or cooling of the substrate surface.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: January 25, 2005
    Assignee: Blue29, LLC
    Inventors: Igor C. Ivanov, Jonathan Welgun Zhang, Artur Kolics
  • Publication number: 20040250755
    Abstract: A process chamber is provided which includes a gate configured to align barriers with an opening of the gate and an opening of the process chamber such that the two openings are either sealed or provide an air passage to the chamber. A method is provided and includes sealing an opening of a chamber with a gate latch and exposing a topography to a first set of process steps, opening the gate latch such that an air passage is provided to the process chamber, and exposing the topography to a second set of process steps without allowing liquids within the chamber to flow through the air passage. A substrate holder comprising a clamping jaw with a lever and a support member coupled to the lever is also contemplated herein. A process chamber with a reservoir arranged above a substrate holder is also provided herein.
    Type: Application
    Filed: June 16, 2003
    Publication date: December 16, 2004
    Inventors: Igor C. Ivanov, Weiguo Zhang
  • Publication number: 20040253826
    Abstract: A method is provided which includes forming a metal layer and converting at least a portion of the metal layer to a hydrated metal oxide layer. Another method is provided which includes selectively depositing a dielectric layer upon another dielectric layer and selectively depositing a metal layer adjacent to the dielectric layer. Consequently, a microelectronic topography is formed which includes a metal feature and an adjacent dielectric portion comprising lower and upper layers of hydrophilic and hydrophobic material, respectively. A topography including a metal feature having a single layer with at least four elements lining a lower surface and sidewalls of the metal feature is also provided herein. The fluid/s used to form such a single layer may be analyzed by test equipment configured to measure the concentration of all four elements. In some cases, the composition of the fluid/s may be adjusted based upon the analysis.
    Type: Application
    Filed: June 16, 2003
    Publication date: December 16, 2004
    Inventors: Igor C. Ivanov, Weiguo Zhang, Artur Kolics