Patents by Inventor Igor Tchertkov

Igor Tchertkov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240085185
    Abstract: Embodiments are disclosed for submersion detection and underwater depth and low-latency temperature estimation. In an embodiment, a method comprises: determining a first set of vertical accelerations obtained from an inertial sensor of a wearable device; determining a second set of vertical accelerations obtained from pressure data; determining a first feature associated with a correlation between the first and second sets of vertical accelerations; and determining that the wearable device is submerged or not submerged in water based on a machine learning model applied to the first feature. In another embodiment, a method comprises: determining a submersion state of a wearable device; and responsive to the submersion state being submerged, computing a forward estimate of water temperature based on measured ambient water temperature at the water surface, a temperature error lookup table, and a rate of change of the ambient water temperature.
    Type: Application
    Filed: September 6, 2023
    Publication date: March 14, 2024
    Inventors: Stephen P. Jackson, Ti-Yen Lan, Yi Wen Liao, Alexandru Popovici, Igor Tchertkov, Rose M. Wahlin, Natisa Jeyakanthan, Amit K. Jain, Kenneth M. Lee
  • Patent number: 10850973
    Abstract: A Microelectromechanical systems (MEMS) structure comprises a MEMS wafer. A MEMS wafer includes a handle wafer with cavities bonded to a device wafer through a dielectric layer disposed between the handle and device wafers. The MEMS wafer also includes a moveable portion of the device wafer suspended over a cavity in the handle wafer. Four methods are described to create two or more enclosures having multiple gas pressure or compositions on a single substrate including, each enclosure containing a moveable portion. The methods include: A. Forming a secondary sealed enclosure, B. Creating multiple ambient enclosures during wafer bonding, C. Creating and breaching an internal gas reservoir, and D. Forming and subsequently sealing a controlled leak/breach into the enclosure.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: December 1, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Michael Daneman, Martin Lim, Kegang Huang, Igor Tchertkov
  • Patent number: 10743777
    Abstract: Disclosed embodiments pertain to cardiovascular parameter (e.g. heart rate) measurements when motion is present. Biometric sensor signal measurements may be obtained based on cardiovascular parameters of a user; and motion sensor signal measurements may be obtained based on user motion. An activity type may be determined based on the motion sensor signals. For example, when non-motion related frequencies in a frequency domain representation of the biometric sensor signal are obscured by user motion, an activity type may be determined based on the motion sensor signals. Further, based on the activity type, for each cardiovascular parameter (e.g. heart rate), a corresponding likely cardiovascular parameter value (e.g. a likely heart rate) may be determined. A corresponding fundamental frequency associated with the biometric sensor signal may then be determined for each cardiovascular parameter based on the motion sensor signal measurements and the corresponding likely cardiovascular parameter value.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: August 18, 2020
    Assignee: QUALCOMM Incorporated
    Inventors: Russel Martin, Shashank Narayanan, Hithesh Reddivari, Vidyut Naware, Igor Tchertkov, Joseph Czompo
  • Patent number: 10667705
    Abstract: Methods, systems, computer-readable media, and apparatuses for obtaining blood pressure measurements are presented. The blood pressure measurements may be obtained by determining a pulse-transit time (PTT) as a function of a photoplethysmography (PPG) measurement and electrocardiogram (ECG) measurement. A mobile device includes outer body sized to be portable for a user of the mobile device. The mobile device also includes a plurality of light emitting components distributed along at least one portion of the mobile device and a plurality of light collecting components configured to measure reflected light from the plurality of light emitting components reflected off of blood vessels within the user. The light emitting and light collecting components are distributed along the at least one portion of the mobile device. The mobile device may also include a light guide configured to direct light emitted by the at least one light emitting component toward blood vessels with the user.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: June 2, 2020
    Assignee: QUALCOMM Incorporated
    Inventors: Igor Tchertkov, Evgeni Yurij Poliakov, Russell Wayne Gruhlke, Russel Allyn Martin, Evgeni Petrovich Gousev, Muhammed Ibrahim Sezan
  • Patent number: 10667706
    Abstract: Methods, systems, computer-readable media, and apparatuses for obtaining blood pressure measurements are presented. The blood pressure measurements may be obtained by determining a pulse-transit time (PTT) as a function of a photoplethysmography (PPG) measurement and electrocardiogram (ECG) measurement. A mobile device includes outer body sized to be portable for a user of the mobile device. The mobile device also includes a plurality of light emitting components distributed along at least one portion of the mobile device and a plurality of light collecting components configured to measure reflected light from the plurality of light emitting components reflected off of blood vessels within the user. The light emitting and light collecting components are distributed along the at least one portion of the mobile device. The mobile device may also include a light guide configured to direct light emitted by the at least one light emitting component toward blood vessels with the user.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: June 2, 2020
    Assignee: QUALCOMM Incorporated
    Inventors: Igor Tchertkov, Evgeni Yurij Poliakov, Russell Wayne Gruhlke, Russel Allyn Martin, Evgeni Petrovich Gousev, Muhammed Ibrahim Sezan
  • Publication number: 20200109045
    Abstract: A Microelectromechanical systems (MEMS) structure comprises a MEMS wafer. A MEMS wafer includes a handle wafer with cavities bonded to a device wafer through a dielectric layer disposed between the handle and device wafers. The MEMS wafer also includes a moveable portion of the device wafer suspended over a cavity in the handle wafer. Four methods are described to create two or more enclosures having multiple gas pressure or compositions on a single substrate including, each enclosure containing a moveable portion. The methods include: A. Forming a secondary sealed enclosure, B. Creating multiple ambient enclosures during wafer bonding, C. Creating and breaching an internal gas reservoir, and D. Forming and subsequently sealing a controlled leak/breach into the enclosure.
    Type: Application
    Filed: November 27, 2019
    Publication date: April 9, 2020
    Inventors: Michael DANEMAN, Martin LIM, Kegang HUANG, Igor TCHERTKOV
  • Patent number: 10532926
    Abstract: A Microelectromechanical systems (MEMS) structure comprises a MEMS wafer. A MEMS wafer includes a handle wafer with cavities bonded to a device wafer through a dielectric layer disposed between the handle and device wafers. The MEMS wafer also includes a moveable portion of the device wafer suspended over a cavity in the handle wafer. Four methods are described to create two or more enclosures having multiple gas pressure or compositions on a single substrate including, each enclosure containing a moveable portion. The methods include: A. Forming a secondary sealed enclosure, B. Creating multiple ambient enclosures during wafer bonding, C. Creating and breaching an internal gas reservoir, and D. Forming and subsequently sealing a controlled leak/breach into the enclosure.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: January 14, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Michael Daneman, Martin Lim, Kegang Huang, Igor Tchertkov
  • Publication number: 20180160912
    Abstract: Disclosed embodiments pertain to cardiovascular parameter (e.g. heart rate) measurements when motion is present. Biometric sensor signal measurements may be obtained based on cardiovascular parameters of a user; and motion sensor signal measurements may be obtained based on user motion. An activity type may be determined based on the motion sensor signals. For example, when non-motion related frequencies in a frequency domain representation of the biometric sensor signal are obscured by user motion, an activity type may be determined based on the motion sensor signals. Further, based on the activity type, for each cardiovascular parameter (e.g. heart rate), a corresponding likely cardiovascular parameter value (e.g. a likely heart rate) may be determined. A corresponding fundamental frequency associated with the biometric sensor signal may then be determined for each cardiovascular parameter based on the motion sensor signal measurements and the corresponding likely cardiovascular parameter value.
    Type: Application
    Filed: March 13, 2017
    Publication date: June 14, 2018
    Inventors: Russel Martin, Shashank Narayanan, Hithesh Reddivari, Vidyut Naware, Igor Tchertkov, Joseph Czompo
  • Publication number: 20170297907
    Abstract: A Microelectromechanical systems (MEMS) structure comprises a MEMS wafer. A MEMS wafer includes a handle wafer with cavities bonded to a device wafer through a dielectric layer disposed between the handle and device wafers. The MEMS wafer also includes a moveable portion of the device wafer suspended over a cavity in the handle wafer. Four methods are described to create two or more enclosures having multiple gas pressure or compositions on a single substrate including, each enclosure containing a moveable portion. The methods include: A. Forming a secondary sealed enclosure, B. Creating multiple ambient enclosures during wafer bonding, C. Creating and breaching an internal gas reservoir, and D. Forming and subsequently sealing a controlled leak/breach into the enclosure.
    Type: Application
    Filed: November 22, 2016
    Publication date: October 19, 2017
    Inventors: Michael DANEMAN, Martin LIM, Kegang HUANG, Igor TCHERTKOV
  • Patent number: 9766264
    Abstract: Described herein is an accelerometer that can be sensitive to acceleration, but not anchor motion due to sources other than acceleration. The accelerometer can employ a set of electrodes and/or transducers that can register motion of the proof mass and support structure and employ and output-cancelling mechanism so that the accelerometer can distinguish between acceleration and anchor motion due to sources other than acceleration. For example, the effects of anchor motion can be cancelled from an output signal of the accelerometer so that the accelerometer exhibits sensitivity to only acceleration.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: September 19, 2017
    Assignee: INVENSENSE, INC.
    Inventors: Jin Qiu, Joe Seeger, Alexander Castro, Igor Tchertkov, Richard Li
  • Publication number: 20170079535
    Abstract: Methods, systems, computer-readable media, and apparatuses for obtaining blood pressure measurements are presented. The blood pressure measurements may be obtained by determining a pulse-transit time (PTT) as a function of a photoplethysmography (PPG) measurement and electrocardiogram (ECG) measurement. A mobile device includes outer body sized to be portable for a user of the mobile device. The mobile device also includes a plurality of light emitting components distributed along at least one portion of the mobile device and a plurality of light collecting components configured to measure reflected light from the plurality of light emitting components reflected off of blood vessels within the user. The light emitting and light collecting components are distributed along the at least one portion of the mobile device. The mobile device may also include a light guide configured to direct light emitted by the at least one light emitting component toward blood vessels with the user.
    Type: Application
    Filed: September 23, 2015
    Publication date: March 23, 2017
    Inventors: Igor TCHERTKOV, Evgeni Yurij POLIAKOV, Russell Wayne GRUHLKE, Russel Allyn MARTIN, Evgeni Petrovich GOUSEV, Muhammed Ibrahim SEZAN
  • Publication number: 20170079534
    Abstract: Methods, systems, computer-readable media, and apparatuses for obtaining blood pressure measurements are presented. The blood pressure measurements may be obtained by determining a pulse-transit time (PTT) as a function of a photoplethysmography (PPG) measurement and electrocardiogram (ECG) measurement. A mobile device includes outer body sized to be portable for a user of the mobile device. The mobile device also includes a plurality of light emitting components distributed along at least one portion of the mobile device and a plurality of light collecting components configured to measure reflected light from the plurality of light emitting components reflected off of blood vessels within the user. The light emitting and light collecting components are distributed along the at least one portion of the mobile device. The mobile device may also include a light guide configured to direct light emitted by the at least one light emitting component toward blood vessels with the user.
    Type: Application
    Filed: September 23, 2015
    Publication date: March 23, 2017
    Inventors: Igor TCHERTKOV, Evgeni Yurij POLIAKOV, Russell Wayne GRUHLKE, Russel Allyn MARTIN, Evgeni Petrovich GOUSEV, Muhammed Ibrahim SEZAN
  • Publication number: 20170079591
    Abstract: Methods, systems, computer-readable media, and apparatuses for obtaining vital measurements are presented. The vital measurements may include a blood pressure value that can be obtained by determining a pulse-transit time (PTT) as a function of a photoplethysmography (PPG) measurement and electrocardiogram (ECG) measurement. A mobile device includes an outer body sized to be portable for a user, a processor contained within the outer body, a display coupled to a light guide, and at least one first sensor coupled to the light guide. The display is configured to display an illumination pattern directing light toward blood vessels within the user. The at least one first sensor is configured to measure reflected light from the illumination pattern reflected off of the blood vessels within the user, wherein the processor is configured to obtain a first measurement indicative of changes in blood volume based at least in part on the measured reflected light.
    Type: Application
    Filed: September 21, 2015
    Publication date: March 23, 2017
    Inventors: Russell GRUHLKE, Igor TCHERTKOV, Russel Allyn MARTIN, Evgeni POLIAKOV, Evgeni GOUSEV, Liang SHEN, Alok GOVIL
  • Patent number: 9540230
    Abstract: A Microelectromechanical systems (MEMS) structure comprises a MEMS wafer. A MEMS wafer includes a handle wafer with cavities bonded to a device wafer through a dielectric layer disposed between the handle and device wafers. The MEMS wafer also includes a moveable portion of the device wafer suspended over a cavity in the handle wafer. Four methods are described to create two or more enclosures having multiple gas pressure or compositions on a single substrate including, each enclosure containing a moveable portion. The methods include: A. Forming a secondary sealed enclosure, B. Creating multiple ambient enclosures during wafer bonding, C. Creating and breaching an internal gas reservoir, and D. Forming and subsequently sealing a controlled leak/breach into the enclosure.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: January 10, 2017
    Assignee: INVENSENSE, INC.
    Inventors: Michael Daneman, Martin Lim, Kegang Huang, Igor Tchertkov
  • Patent number: 9322701
    Abstract: Systems, apparatus and methods for estimating a mass of an object by a mobile device are presented. The mobile device, which may be a smartphone, vibrates the mobile device both unloaded (without an object) and loaded (with an object) while measuring the unloaded and loaded vibrations. Next, the mobile device compares the unloaded and loaded vibrations and determines the mass of the object from the comparison.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: April 26, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Igor Tchertkov, Siddika Parlak Polatkan
  • Publication number: 20160081627
    Abstract: Methods, systems, computer-readable media, and apparatuses for assessing a fitness state of a user via a mobile device are presented. In some implementations, a first physiological measurement of the user during a first level of a physical activity is obtained via one or more sensors. A second physiological measurement during a second level of the physical activity is obtained via the one or more sensors. A transient physiological measurement based on the first physiological measurement and the second physiological measurement is determined. The physical activity is classified based on one or more motion measurements obtained via the one or more sensors. A fitness profile indicative of a fitness state of the user is generated based at least in part on the determined transient physiological measurement and the classified physical activity.
    Type: Application
    Filed: September 23, 2014
    Publication date: March 24, 2016
    Inventors: Justin Patrick McGloin, Russel Allyn Martin, Radu Pitigoi-Aron, Ramin Samadani, Igor Tchertkov
  • Publication number: 20150132855
    Abstract: Techniques described herein enable a mobile multifunction device to detect a disposable sensor card at an interface coupled to the mobile multifunction device, wherein the disposable sensor card is mounted inside an opening in the mobile multifunction device, detect analog information associated with the disposable sensor card, and convert analog information to digital information. Detecting analog information comprises detecting a non-transient change in at least a portion of the disposable sensor card, wherein at least a portion of the first disposable sensor card changes form in response to exposure to one or more stimuli from an environment of the first disposable sensor card. A non-transient change may include one or more of changing color, changing shape, changing chemical composition or changing electrical characteristics. Furthermore, the interface may be configured to receive disposable sensor cards with varying sensing capabilities.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 14, 2015
    Applicant: QUALCOMM Incorporated
    Inventors: Russel Allyn Martin, Ana Rangelova Londergan, Justin Phelps Black, Rihui He, Igor Tchertkov, Raghu Subramanian Srivatsa
  • Publication number: 20150034396
    Abstract: Systems, apparatus and methods for estimating a mass of an object by a mobile device are presented. The mobile device, which may be a smartphone, vibrates the mobile device both unloaded (without an object) and loaded (with an object) while measuring the unloaded and loaded vibrations. Next, the mobile device compares the unloaded and loaded vibrations and determines the mass of the object from the comparison.
    Type: Application
    Filed: August 2, 2013
    Publication date: February 5, 2015
    Applicant: QUALCOMM Incorporated
    Inventors: Igor TCHERTKOV, Siddika PARLAK POLATKAN
  • Publication number: 20140360268
    Abstract: Described herein is an accelerometer that can be sensitive to acceleration, but not anchor motion due to sources other than acceleration. The accelerometer can employ a set of electrodes and/or transducers that can register motion of the proof mass and support structure and employ and output-cancelling mechanism so that the accelerometer can distinguish between acceleration and anchor motion due to sources other than acceleration. For example, the effects of anchor motion can be cancelled from an output signal of the accelerometer so that the accelerometer exhibits sensitivity to only acceleration.
    Type: Application
    Filed: August 21, 2014
    Publication date: December 11, 2014
    Inventors: Jin Qiu, Joe Seeger, Alexander Castro, Igor Tchertkov, Richard Li
  • Patent number: 8839670
    Abstract: Described herein is an accelerometer that can be sensitive to acceleration, but not anchor motion due to sources other than acceleration. The accelerometer can employ a set of electrodes and/or transducers that can register motion of the proof mass and support structure and employ and output-cancelling mechanism so that the accelerometer can distinguish between acceleration and anchor motion due to sources other than acceleration. For example, the effects of anchor motion can be cancelled from an output signal of the accelerometer so that the accelerometer exhibits sensitivity to only acceleration.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: September 23, 2014
    Assignee: Invensense, Inc.
    Inventors: Jin Qiu, Joe Seeger, Alexander Castro, Igor Tchertkov, Richard Li