Patents by Inventor Ikenna Odinaka

Ikenna Odinaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11641205
    Abstract: A multiplier cell is derived from a 1-bit full adder and an AND gate. The 1-bit full adder is derived from majority and/or minority gates. The majority and/or minority gates include non-linear polar material (e.g., ferroelectric or paraelectric material). A reset mechanism is provided to reset the nodes across the non-linear polar material. The multiplier cell is a hybrid of majority and/or minority gates and complementary metal oxide semiconductor (CMOS) based inverters and/or buffers. The adder uses a non-linear polar capacitor to retain charge with fewer transistors than traditional CMOS sequential circuits. The non-linear polar capacitor includes ferroelectric material, paraelectric material, or non-linear dielectric. Input signals are received by respective terminals of capacitors having non-linear polar material. The other terminals of these capacitors are coupled to a node where the majority function takes place for the inputs.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: May 2, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Rafael Rios, Ikenna Odinaka, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Publication number: 20230094542
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates and threshold gates. Input signals in the form of analog, digital, or combination of them are driven to first terminals of non-ferroelectric capacitors. The second terminals of the non-ferroelectric capacitors are coupled to form a majority node. Majority function of the input signals occurs on this node. The majority node is then coupled to a first terminal of a capacitor comprising non-linear polar material. The second terminal of the capacitor provides the output of the logic gate, which can be driven by any suitable logic gate such as a buffer, inverter, NAND gate, NOR gate, etc. Any suitable logic or analog circuit can drive the output and inputs of the majority logic gate. As such, the majority gate of various embodiments can be combined with existing transistor technologies.
    Type: Application
    Filed: November 16, 2022
    Publication date: March 30, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Rafael Rios, Ikenna Odinaka, Robert Menezes, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Amrita Mathuriya
  • Patent number: 11611345
    Abstract: A low power sequential circuit (e.g., latch) uses a non-linear polar capacitor to retain charge with fewer transistors than traditional CMOS sequential circuits. In one example, a sequential circuit includes pass-gates and inverters, but without a feedback mechanism or memory element. In another example, a sequential uses load capacitors (e.g., capacitors coupled to a storage node and a reference supply). The load capacitors are implemented using ferroelectric material, paraelectric material, or linear dielectric. In one example, a sequential uses minority, majority, or threshold gates with ferroelectric or paraelectric capacitors. In one example, a sequential circuit uses minority, majority, or threshold gates configured as NAND gates.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: March 21, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Ikenna Odinaka, Rajeev Kumar Dokania, Rafael Rios, Sasikanth Manipatruni
  • Publication number: 20230023797
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates and threshold gates. Input signals in the form of analog, digital, or combination of them are driven to first terminals of non-ferroelectric capacitors. The second terminals of the non-ferroelectric capacitors are coupled to form a majority node. Majority function of the input signals occurs on this node. The majority node is then coupled to a first terminal of a capacitor comprising non-linear polar material. The second terminal of the capacitor provides the output of the logic gate, which can be driven by any suitable logic gate such as a buffer, inverter, NAND gate, NOR gate, etc. Any suitable logic or analog circuit can drive the output and inputs of the majority logic gate. As such, the majority gate of various embodiments can be combined with existing transistor technologies.
    Type: Application
    Filed: May 11, 2021
    Publication date: January 26, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Rafael Rios, Ikenna Odinaka, Robert Menezes, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Amrita Mathuriya
  • Patent number: 11545979
    Abstract: A low power sequential circuit (e.g., latch) uses a non-linear polar capacitor to retain charge with fewer transistors than traditional CMOS sequential circuits. In one example, a sequential circuit includes pass-gates and inverters, but without a feedback mechanism or memory element. In another example, a sequential uses load capacitors (e.g., capacitors coupled to a storage node and a reference supply). The load capacitors are implemented using ferroelectric material, paraelectric material, or linear dielectric. In one example, a sequential uses minority, majority, or threshold gates with ferroelectric or paraelectric capacitors. In one example, a sequential circuit uses minority, majority, or threshold gates configured as NAND gates.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: January 3, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Ikenna Odinaka, Rajeev Kumar Dokania, Rafael Rios, Sasikanth Manipatruni
  • Patent number: 11539368
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates and threshold gates. Input signals in the form of analog, digital, or combination of them are driven to first terminals of non-ferroelectric capacitors. The second terminals of the non-ferroelectric capacitors are coupled to form a majority node. Majority function of the input signals occurs on this node. The majority node is then coupled to a first terminal of a capacitor comprising non-linear polar material. The second terminal of the capacitor provides the output of the logic gate, which can be driven by any suitable logic gate such as a buffer, inverter, NAND gate, NOR gate, etc. Any suitable logic or analog circuit can drive the output and inputs of the majority logic gate. As such, the majority gate of various embodiments can be combined with existing transistor technologies.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: December 27, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Rafael Rios, Ikenna Odinaka, Robert Menezes, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Amrita Mathuriya
  • Publication number: 20220393686
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. Input signals in the form of digital signals are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node which provides a majority function of the inputs. The majority node is then coupled driver circuitry which can be any suitable logic gate such as a buffer, inverter, NAND gate, NOR gate, etc. In the multi-input majority or minority gates, the non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels. Bringing the majority output close to rail-to-rail voltage eliminates the high leakage problem faced from majority gates formed using linear input capacitors.
    Type: Application
    Filed: June 22, 2022
    Publication date: December 8, 2022
    Applicant: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Rafael Rios, Neal Reynolds, Ikenna Odinaka, Robert Menezes, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Amrita Mathuriya
  • Patent number: 11509308
    Abstract: A low power sequential circuit (e.g., latch) uses a non-linear polar capacitor to retain charge with fewer transistors than traditional CMOS sequential circuits. In one example, a sequential circuit includes pass-gates and inverters, but without a feedback mechanism or memory element. In another example, a sequential uses load capacitors (e.g., capacitors coupled to a storage node and a reference supply). The load capacitors are implemented using ferroelectric material, paraelectric material, or linear dielectric. In one example, a sequential uses minority, majority, or threshold gates with ferroelectric or paraelectric capacitors. In one example, a sequential circuit uses minority, majority, or threshold gates configured as NAND gates.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: November 22, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Ikenna Odinaka, Rajeev Kumar Dokania, Rafael Rios, Sasikanth Manipatruni
  • Patent number: 11482990
    Abstract: A low power sequential circuit (e.g., latch) uses a non-linear polar capacitor to retain charge with fewer transistors than traditional CMOS sequential circuits. In one example, a sequential circuit includes pass-gates and inverters, but without a feedback mechanism or memory element. In another example, a sequential uses load capacitors (e.g., capacitors coupled to a storage node and a reference supply). The load capacitors are implemented using ferroelectric material, paraelectric material, or linear dielectric. In one example, a sequential uses minority, majority, or threshold gates with ferroelectric or paraelectric capacitors. In one example, a sequential circuit uses minority, majority, or threshold gates configured as NAND gates.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: October 25, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Ikenna Odinaka, Rajeev Kumar Dokania, Rafael Rios, Sasikanth Manipatruni
  • Patent number: 11418197
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. Input signals in the form of digital signals are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node which provides a majority function of the inputs. In the multi-input majority or minority gates, the non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels. In some examples, the nodes of the non-linear input capacitors are conditioned once in a while to preserve function of the multi-input majority gates.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: August 16, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Rafael Rios, Ikenna Odinaka, Robert Menezes, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Patent number: 11394387
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. Input signals in the form of digital signals are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node which provides a majority function of the inputs. The majority node is then coupled driver circuitry which can be any suitable logic gate such as a buffer, inverter, NAND gate, NOR gate, etc. In the multi-input majority or minority gates, the non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels. Bringing the majority output close to rail-to-rail voltage eliminates the high leakage problem faced from majority gates formed using linear input capacitors.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: July 19, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Rafael Rios, Neal Reynolds, Ikenna Odinaka, Robert Menezes, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Amrita Mathuriya
  • Patent number: 11374575
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. Input signals in the form of digital signals are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node which provides a majority function of the inputs. In the multi-input majority or minority gates, the non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels. In some examples, the nodes of the non-linear input capacitors are conditioned once in a while to preserve function of the multi-input majority gates.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: June 28, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Rafael Rios, Ikenna Odinaka, Robert Menezes, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Patent number: 11303280
    Abstract: A low power sequential circuit (e.g., latch) uses a non-linear polar capacitor to retain charge with fewer transistors than traditional CMOS sequential circuits. In one example, a sequential circuit includes pass-gates and inverters, but without a feedback mechanism or memory element. In another example, a sequential uses load capacitors (e.g., capacitors coupled to a storage node and a reference supply). The load capacitors are implemented using ferroelectric material, paraelectric material, or linear dielectric. In one example, a sequential uses minority, majority, or threshold gates with ferroelectric or paraelectric capacitors. In one example, a sequential circuit uses minority, majority, or threshold gates configured as NAND gates.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: April 12, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Ikenna Odinaka, Rajeev Kumar Dokania, Rafael Rios, Sasikanth Manipatruni
  • Patent number: 11290112
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. Input signals in the form of digital signals are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node which provides a majority function of the inputs. The majority node is then coupled driver circuitry which can be any suitable logic gate such as a buffer, inverter, NAND gate, NOR gate, etc. In the multi-input majority or minority gates, the non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels. Bringing the majority output close to rail-to-rail voltage eliminates the high leakage problem faced from majority gates formed using linear input capacitors.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: March 29, 2022
    Assignee: Kepler Computing, Inc.
    Inventors: Sasikanth Manipatruni, Rafael Rios, Neal Reynolds, Ikenna Odinaka, Robert Menezes, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Amrita Mathuriya
  • Patent number: 11290111
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. Input signals in the form of digital signals are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node which provides a majority function of the inputs. The majority node is then coupled driver circuitry which can be any suitable logic gate such as a buffer, inverter, NAND gate, NOR gate, etc. In the multi-input majority or minority gates, the non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels. Bringing the majority output close to rail-to-rail voltage eliminates the high leakage problem faced from majority gates formed using linear input capacitors.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: March 29, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Rafael Rios, Neal Reynolds, Ikenna Odinaka, Robert Menezes, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Amrita Mathuriya
  • Patent number: 11277137
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. Input signals in the form of digital signals are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node which provides a majority function of the inputs. The majority node is then coupled driver circuitry which can be any suitable logic gate such as a buffer, inverter, NAND gate, NOR gate, etc. In the multi-input majority or minority gates, the non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels. Bringing the majority output close to rail-to-rail voltage eliminates the high leakage problem faced from majority gates formed using linear input capacitors.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: March 15, 2022
    Assignee: Kepler Computing, Inc.
    Inventors: Sasikanth Manipatruni, Rafael Rios, Neal Reynolds, Ikenna Odinaka, Robert Menezes, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Amrita Mathuriya