Patents by Inventor Ilija Dukovski
Ilija Dukovski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20070161138Abstract: A method for making an electronic device may include forming a poled superlattice comprising a plurality of stacked groups of layers and having a net electrical dipole moment. Each group of layers of the poled superlattice may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween. The method may further include coupling at least one electrode to the poled superlattice.Type: ApplicationFiled: December 21, 2006Publication date: July 12, 2007Applicant: RJ Mears, LLCInventors: Samed Halilov, Xiangyang Huang, Ilija Dukovski, Jean Augustin Yiptong, Robert Mears, Marek Hytha, Robert Stephenson
-
Publication number: 20070158640Abstract: An electronic device may include a poled superlattice comprising a plurality of stacked groups of layers and having a net electrical dipole moment. Each group of layers of the poled superlattice may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween. The electronic device may further include at least one electrode coupled to the poled superlattice.Type: ApplicationFiled: December 21, 2006Publication date: July 12, 2007Applicant: RJ Mears, LLCInventors: Samed Halilov, Xiangyang Huang, Ilija Dukovski, Jean Augustin Yiptong, Robert Mears, Marek Hytha, Robert Stephenson
-
Patent number: 7071119Abstract: A semiconductor device includes a superlattice that, in turn, includes a plurality of stacked groups of layers. The device may also include regions for causing transport of charge carriers through the superlattice in a parallel direction relative to the stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. Moreover, the energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Accordingly, the superlattice may have a higher charge carrier mobility in the parallel direction than would otherwise be present.Type: GrantFiled: November 18, 2004Date of Patent: July 4, 2006Assignee: RJ Mears, LLCInventors: Robert J. Mears, Jean Augustin Chan Sow Fook Yiptong, Marek Hytha, Scott A. Kreps, Ilija Dukovski
-
Semiconductor device including band-engineered superlattice having 3/1-5/1 germanium layer structure
Patent number: 7034329Abstract: A semiconductor device includes a superlattice that, in turn, includes a plurality of stacked groups of layers. The device may also include regions for causing transport of charge carriers through the superlattice in a parallel direction relative to the stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. Moreover, the energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Accordingly, the superlattice may have a higher charge carrier mobility in the parallel direction than would otherwise be present.Type: GrantFiled: November 18, 2004Date of Patent: April 25, 2006Assignee: RJ Mears, LLCInventors: Robert J. Mears, Jean Augustin Chan Sow Fook Yiptong, Marek Hytha, Scott A. Kreps, Ilija Dukovski -
Patent number: 7033437Abstract: A method is for making a semiconductor device by forming a superlattice that, in turn, includes a plurality of stacked groups of layers. The method may also include forming regions for causing transport of charge carriers through the superlattice in a parallel direction relative to the stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. The energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions so that the superlattice may have a higher charge carrier mobility in the parallel direction than would otherwise occur. The superlattice may also have a common energy band structure therein.Type: GrantFiled: November 19, 2003Date of Patent: April 25, 2006Assignee: RJ Mears, LLCInventors: Robert J. Mears, Jean Augustin Chan Sow Fook Yiptong, Marek Hytha, Scott A. Kreps, Ilija Dukovski
-
Publication number: 20060019454Abstract: A method for making a semiconductor device may include forming a superlattice comprising a plurality of stacked groups of layers adjacent a substrate. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming a high-K dielectric layer on the electrode layer, and forming an electrode layer on the high-K dielectric layer and opposite the superlattice.Type: ApplicationFiled: May 25, 2005Publication date: January 26, 2006Applicant: RJ Mears, LLCInventors: Robert Mears, Marek Hytha, Scott Kreps, Robert Stephenson, Jean Augustin Yiptong, Ilija Dukovski, Kalipatnam Rao, Samed Halilov, Xiangyang Huang
-
Publication number: 20060011905Abstract: A semiconductor device may include a semiconductor substrate and at least one active device adjacent the semiconductor substrate. The at least one active device may include an electrode layer, a high-K dielectric layer underlying the electrode layer and in contact therewith, and a superlattice underlying the high-K dielectric layer opposite the electrode layer and in contact with the high-K dielectric layer. The superlattice may include a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.Type: ApplicationFiled: May 25, 2005Publication date: January 19, 2006Applicant: RJ Mears, LLCInventors: Robert Mears, Marek Hytha, Scott Kreps, Robert Stephenson, Jean Augustin Chan yiptong, Ilija Dukovski, Kalipatnam Rao, Samed Halilov, Xiangyang Huang
-
Patent number: 6958486Abstract: A semiconductor device includes a superlattice that, in turn, includes a plurality of stacked groups of layers. The device may also include regions for causing transport of charge carriers through the superlattice in a parallel direction relative to the stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. Moreover, the energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Accordingly, the superlattice may have a higher charge carrier mobility in the parallel direction than would otherwise be present.Type: GrantFiled: August 22, 2003Date of Patent: October 25, 2005Assignee: RJ Mears, LLCInventors: Robert J. Mears, Jean Augustin Chan Sow Fook Yiptong, Marek Hytha, Scott A. Kreps, Ilija Dukovski
-
Patent number: 6952018Abstract: A semiconductor device includes a superlattice that, in turn, includes a plurality of stacked groups of layers. The device may also include regions for causing transport of charge carriers through the superlattice in a parallel direction relative to the stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. Moreover, the energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Accordingly, the superlattice may have a higher charge carrier mobility in the parallel direction than would otherwise be present.Type: GrantFiled: November 19, 2003Date of Patent: October 4, 2005Assignee: RJ Mears, LLCInventors: Robert J. Mears, Jean Augustin Chan Sow Fook Yiptong, Marek Hytha, Scott A. Kreps, Ilija Dukovski
-
Publication number: 20050184286Abstract: A semiconductor device includes a substrate, and at least one MOSFET adjacent the substrate. The MOSFET may include a superlattice channel that, in turn, includes a plurality of stacked groups of layers. The MOSFET may also include source and drain regions laterally adjacent the superlattice channel, and a gate overlying the superlattice channel for causing transport of charge carriers through the superlattice channel in a parallel direction relative to the stacked groups of layers. Each group of the superlattice channel may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and an energy band-modifying layer thereon. The energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions so that the superlattice channel may have a higher charge carrier mobility in the parallel direction than would otherwise occur.Type: ApplicationFiled: March 25, 2005Publication date: August 25, 2005Applicant: RJ Mears, LLC, State of Incorporation: DelawareInventors: Robert Mears, Jean Augustin Chan Sow Yiptong, Marek Hytha, Scott Kreps, Ilija Dukovski
-
Publication number: 20050173696Abstract: A method for making a semiconductor device may include providing a substrate, and forming at least one MOSFET adjacent the substrate by forming a superlattice including a plurality of stacked groups of layers and a semiconductor cap layer on an uppermost group of layers. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming source, drain, and gate regions defining a channel through at least a portion of the semiconductor cap layer.Type: ApplicationFiled: January 25, 2005Publication date: August 11, 2005Applicant: RJ MEARS, LLCInventors: Robert Mears, Jean Augustin Chan Yiptong, Marek Hytha, Scott Kreps, Ilija Dukovski
-
Publication number: 20050173697Abstract: A semiconductor device may include a substrate and at least one MOSFET adjacent the substrate including a superlattice. The superlattice may include a plurality of stacked groups of layers and a semiconductor cap layer on an uppermost group of layers. Each group of layers of the superlattice may comprise a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The MOSFET may further include source, drain, and gate regions defining a channel through at least a portion of the semiconductor cap layer.Type: ApplicationFiled: January 25, 2005Publication date: August 11, 2005Applicant: RJ MEARS, LLCInventors: Robert Mears, Jean Chan Sow Fook Yiptong, Marek Hytha, Scott Kreps, Ilija Dukovski
-
Patent number: 6927413Abstract: A semiconductor device includes a superlattice that, in turn, includes a plurality of stacked groups of layers. The device may also include regions for causing transport of charge carriers through the superlattice in a parallel direction relative to the stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. Moreover, the energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Accordingly, the superlattice may have a higher charge carrier mobility in the parallel direction than would otherwise be present.Type: GrantFiled: November 19, 2003Date of Patent: August 9, 2005Assignee: RJ Mears, LLCInventors: Robert J. Mears, Jean Augustin Chan Sow Fook Yiptong, Marek Hytha, Scott A. Kreps, Ilija Dukovski
-
Patent number: 6897472Abstract: A semiconductor device includes a substrate, and at least one MOSFET adjacent the substrate. The MOSFET may include a superlattice channel that, in turn, includes a plurality of stacked groups of layers. The MOSFET may also include source and drain regions laterally adjacent the superlattice channel, and a gate overlying the superlattice channel for causing transport of charge carriers through the superlattice channel in a parallel direction relative to the stacked groups of layers. Each group of the superlattice channel may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and an energy band-modifying layer thereon. The energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions so that the superlattice channel may have a higher charge carrier mobility in the parallel direction than would otherwise occur.Type: GrantFiled: August 22, 2003Date of Patent: May 24, 2005Assignee: RJ Mears, LLCInventors: Robert J. Mears, Jean Augustin Chan Sow Fook Yiptong, Marek Hytha, Scott A. Kreps, Ilija Dukovski
-
Patent number: 6891188Abstract: A semiconductor device includes a superlattice that, in turn, includes a plurality of stacked groups of layers. The device may also include regions for causing transport of charge carriers through the superlattice in a parallel direction relative to the stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. Moreover, the energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Accordingly, the superlattice may have a higher charge carrier mobility in the parallel direction than would otherwise be present.Type: GrantFiled: November 19, 2003Date of Patent: May 10, 2005Assignee: RJ Mears, LLCInventors: Robert J. Mears, Jean Augustin Chan Sow Fook Yiptong, Marek Hytha, Scott A. Kreps, Ilija Dukovski
-
Semiconductor device including band-engineered superlattice having 3/1-5/1 germanium layer structure
Publication number: 20050087736Abstract: A semiconductor device includes a superlattice that, in turn, includes a plurality of stacked groups of layers. The device may also include regions for causing transport of charge carriers through the superlattice in a parallel direction relative to the stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. Moreover, the energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Accordingly, the superlattice may have a higher charge carrier mobility in the parallel direction than would otherwise be present.Type: ApplicationFiled: November 18, 2004Publication date: April 28, 2005Applicant: RJ Mears, LLC.Inventors: Robert Mears, Jean Fook Yiptong, Marek Hytha, Scott Kreps, Ilija Dukovski -
Publication number: 20050087738Abstract: A semiconductor device includes a superlattice that, in turn, includes a plurality of stacked groups of layers. The device may also include regions for causing transport of charge carriers through the superlattice in a parallel direction relative to the stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. Moreover, the energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Accordingly, the superlattice may have a higher charge carrier mobility in the parallel direction than would otherwise be present.Type: ApplicationFiled: November 18, 2004Publication date: April 28, 2005Inventors: Robert Mears, Jean Sow Fook Yiptong, Marek Hytha, Scott Kreps, Ilija Dukovski
-
Patent number: 6878576Abstract: A method is for making a semiconductor device by forming a superlattice that, in turn, includes a plurality of stacked groups of layers. The method may also include forming regions for causing transport of charge carriers through the superlattice in a parallel direction relative to the stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. The energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions so that the superlattice may have a higher charge carrier mobility in the parallel direction than would otherwise occur. The superlattice may also have a common energy band structure therein.Type: GrantFiled: November 19, 2003Date of Patent: April 12, 2005Assignee: RJ Mears, LLCInventors: Robert J. Mears, Jean Augustin Chan Sow Fook Yiptong, Marek Hytha, Scott A. Kreps, Ilija Dukovski
-
Publication number: 20050017235Abstract: A semiconductor device includes a superlattice that, in turn, includes a plurality of stacked groups of layers. The device may also include regions for causing transport of charge carriers through the superlattice in a parallel direction relative to the stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. Moreover, the energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Accordingly, the superlattice may have a higher charge carrier mobility in the parallel direction than would otherwise be present.Type: ApplicationFiled: November 19, 2003Publication date: January 27, 2005Inventors: Robert Mears, Jean Augustin Chan Yiptong, Marek Hytha, Scott Kreps, Ilija Dukovski
-
Publication number: 20040266045Abstract: A method is for making a semiconductor device by forming a superlattice that, in turn, includes a plurality of stacked groups of layers. The method may also include forming regions for causing transport of charge carriers through the superlattice in a parallel direction relative to the stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. The energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions so that the superlattice may have a higher charge carrier mobility in the parallel direction than would otherwise occur. The superlattice may also have a common energy band structure therein.Type: ApplicationFiled: August 22, 2003Publication date: December 30, 2004Applicant: RJ Mears LLC.Inventors: Robert J. Mears, Jean Augustin Chan Sow Fook Yiptong, Marek Hytha, Scott A. Kreps, Ilija Dukovski