Patents by Inventor Ilya Aleksandrovich Slobodyanskiy

Ilya Aleksandrovich Slobodyanskiy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160230711
    Abstract: A gas turbine system includes a turbine combustor, a turbine, an exhaust gas compressor, an exhaust gas recirculation (EGR) system, a carbon black recovery system, and a carbon black production controller. The carbon black production controller monitors data corresponding to a parameter of the carbon black. The carbon black production controller is also configured to adjust, based on the data, the fuel provided to the turbine combustor while maintaining a ratio of the fuel to the oxidant within a predetermined range to adjust the parameter of the carbon black.
    Type: Application
    Filed: January 28, 2016
    Publication date: August 11, 2016
    Inventors: Richard A. Huntington, William N. Yunker, Ilya Aleksandrovich Slobodyanskiy
  • Publication number: 20160223202
    Abstract: A system having a gas turbine engine is provided. The gas turbine engine includes a turbine and a combustor coupled to the turbine. The combustor includes a combustion chamber, one or more fuel nozzles upstream from the combustion chamber, and a head end having an end cover assembly. The end cover assembly includes an oxidant inlet configured to receive an oxidant flow, a central oxidant passage, and at least one fuel supply passage. The central oxidant passage is in fluid communication with the oxidant inlet, and the central oxidant passage is configured to route the oxidant flow to the one or more fuel nozzles. The at least one fuel supply passage is configured to receive a fuel flow and route the fuel flow into the one or more fuel nozzles.
    Type: Application
    Filed: February 2, 2016
    Publication date: August 4, 2016
    Inventors: Bradford David Borchert, Jesse Edwin Trout, Scott Robert Simmons, Almaz Valeev, Ilya Aleksandrovich Slobodyanskiy, Igor Petrovich Sidko, Leonid Yul'evich Ginesin
  • Publication number: 20160222883
    Abstract: A system includes a turbine combustor having a first volume configured to receive a combustion fluid and to direct the combustion fluid into a combustion chamber and a second volume configured to receive a first flow of an exhaust gas. The second volume is configured to direct a first portion of the first flow of the exhaust gas into the combustion chamber and to direct a second portion of the first flow of the exhaust gas into a third volume isolated from the first volume. The third volume is in fluid communication with an extraction conduit that is configured to direct the second portion of the first flow of the exhaust gas out of the turbine combustor.
    Type: Application
    Filed: February 3, 2016
    Publication date: August 4, 2016
    Inventors: Jonathan Kay Allen, Bradford David Borchert, Jesse Edwin Trout, Ilya Aleksandrovich Slobodyanskiy, Almaz Valeev, Igor Petrovich Sidko, Andrey Pavlovich Subbota
  • Publication number: 20160222884
    Abstract: A system includes a turbine combustor having a first volume configured to receive a combustion fluid and to direct the combustion fluid into a combustion chamber. The turbine combustor includes a second volume configured to receive a first flow of an exhaust gas and to direct the first flow of the exhaust gas into the combustion chamber. The turbine combustor also includes a third volume disposed axially downstream from the first volume and circumferentially about the second volume. The third volume is configured to receive a second flow of the exhaust gas and to direct the second flow of the exhaust gas out of the turbine combustor via an extraction outlet, and the third volume is isolated from the first volume and from the second volume.
    Type: Application
    Filed: February 3, 2016
    Publication date: August 4, 2016
    Inventors: Jonathan Kay Allen, Bradford David Borchert, Jesse Edwin Trout, Ilya Aleksandrovich Slobodyanskiy, Almaz Valeev, Igor Petrovich Sidko, Matthew Eugene Roberts, Leonid Yulk'evich Ginesin
  • Publication number: 20160201916
    Abstract: A system includes a turbine combustor. The turbine combustor has a combustor liner disposed about a combustion chamber, a flow sleeve, and a radial passageway. The flow sleeve disposed at an offset about the combustor liner to define a passage, wherein the passage is configured to direct an exhaust gas flow toward a head end of the turbine combustor. The radial passageway extends between the flow sleeve and the combustor liner, and the radial passageway is configured to isolate an oxidant flow through the radial passageway from the exhaust gas flow through the passage for a first operating condition and a second operating condition of the turbine combustor. The offset between the combustor liner and the flow sleeve at the first operating condition is greater than the offset between the combustor liner and the flow sleeve at the second operating condition.
    Type: Application
    Filed: January 11, 2016
    Publication date: July 14, 2016
    Inventors: Jonathan Kay Allen, Jesse Edwin Trout, Ilya Aleksandrovich Slobodyanskiy, Bradford David Borchert, Michael V. Kazakis, Igor Petrovich Sidko
  • Publication number: 20160190963
    Abstract: A method includes combusting a fuel and an oxidant in a combustor of an exhaust gas recirculation (EGR) gas turbine system that produces electrical power and provides a portion of the electrical power to an electrical grid. The method further includes controlling, via one or more processors, one or more parameters of the EGR gas turbine system to decrease the portion of the electrical power provided to the electrical grid in response to an over-frequency event associated with the electrical grid, wherein controlling the one or more parameters comprises decreasing a flow rate of fuel to the combustor in response to the over-frequency event.
    Type: Application
    Filed: December 29, 2015
    Publication date: June 30, 2016
    Inventors: Jonathan Carl Thatcher, Ilya Aleksandrovich Slobodyanskiy, Aaron Lavene Vorel
  • Publication number: 20160053681
    Abstract: A liquid fuel combustor for a gas turbomachine includes a combustor body, a combustor liner arranged in the combustor body defining a combustion chamber extending from a head end to a combustor discharge. The combustor liner is spaced from the combustor body forming a compressor discharge casing (CDC) airflow passage. A nozzle is arranged at the head end of the combustor liner. The nozzle includes a first inlet, a second inlet and an outlet configured and disposed to establish a flame zone. The first inlet is configured to receive a first fluid and the second inlet is configured to receive a second fluid. The second fluid includes a liquid fuel. An oxygen-depleted gas (ODG) injection system is arranged radially outwardly of the nozzle. The ODG injection system is configured and disposed to deliver an oxygen-depleted gas stream into the combustion chamber to vaporize a portion of the second fluid.
    Type: Application
    Filed: August 20, 2014
    Publication date: February 25, 2016
    Inventors: William Francis Carnell, JR., Ilya Aleksandrovich Slobodyanskiy
  • Publication number: 20160053999
    Abstract: A combustor for a gas turbomachine includes a combustor body, and a combustor liner arranged in the combustor body and defining a combustion chamber extending from a head end to a combustor discharge. The combustor liner is spaced from the combustor body forming a compressor discharge casing (CDC) airflow passage. At least one nozzle is arranged at the head end of the combustor liner. The at least one nozzle includes an outlet configured and disposed to establish a flame zone. At least one recirculation member is arranged at the head end of the combustor liner. The at least one recirculation member is configured and disposed to guide oxygen-depleted combustion products from the flame zone back to the outlet of the at least one nozzle.
    Type: Application
    Filed: August 20, 2014
    Publication date: February 25, 2016
    Inventors: Ilya Aleksandrovich Slobodyanskiy, William Francis Carnell, JR., John Edward Pritchard
  • Patent number: 9127844
    Abstract: A fuel nozzle is provided and includes a nozzle body defining first and second interior regions for providing a supply of first and second fluids, a collar defining a third interior region and radial slots permitting radial ingress of a third fluid to the third interior region and a nozzle tip interposed between the nozzle body and the collar. The nozzle tip defines an annular slot, first discrete passageways by which the first fluid is communicated from the first interior region to the annular slot, second discrete passageways by which the first fluid is communicated from the annular slot to the radial slots, and third discrete passageways by which the second fluid is communicated from the second interior region to the radial slots.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: September 8, 2015
    Assignee: General Electric Company
    Inventors: Ilya Aleksandrovich Slobodyanskiy, William Francis Carnell, Jr.
  • Publication number: 20150204239
    Abstract: A system includes a fuel control system configured to control a fuel flow to one or more combustors and an oxidant control system configured to control an oxidant flow to each combustor of the one or more combustors, wherein the oxidant flow is configured to at least partially react with the fuel flow within the one or more combustors to form an exhaust gas flow. The system also includes an exhaust gas system configured to direct a recirculation flow of the exhaust gas flow to each combustor of the one or more combustors; and a controller coupled to the fuel control system, the oxidant control system, and the exhaust gas system. The controller is configured to independently control a fuel-to-oxidant ratio and an exhaust gas-to-oxidant ratio. The FOR is the fuel flow divided by the oxidant flow, and the EGOR is the recirculation flow divided by the oxidant flow.
    Type: Application
    Filed: January 19, 2015
    Publication date: July 23, 2015
    Inventors: Karl Dean Minto, Ilya Aleksandrovich Slobodyanskiy, Lewis Berkley Davis, Jr., John Joseph Lipinski
  • Publication number: 20150153044
    Abstract: A turbomachine combustor assembly includes a combustor body, and a combustor liner arranged within the combustor body. The combustor liner defines a combustion chamber having a head end and a discharge end. A plurality of combustor nozzles are arranged in an annular array at the head end of the combustion chamber, and a fluid delivery nozzle is arranged substantially centrally within the annular array at the head end of the combustion chamber. The fluid delivery nozzle includes a first end portion that extends to a second end portion through a wall portion. The wall portion includes at least one combustion chamber outlet. The fluid delivery nozzle is configured to deliver a non-combustible fluid into the at least one of the plurality of combustor nozzles and the combustion chamber.
    Type: Application
    Filed: March 29, 2012
    Publication date: June 4, 2015
    Inventors: Ilya Aleksandrovich Slobodyanskiy, Alexander Nikolay Sokolov, Dimitry Vladlenovich Tretyakov
  • Publication number: 20150075171
    Abstract: A turbomachine combustor assembly includes a combustor body, and a combustor liner arranged within the combustor body. The combustor liner defines a combustion chamber having a head end and a discharge end. A plurality of combustor nozzles are arranged in an annular array at the head end of the combustion chamber, and a fluid delivery nozzle is arranged substantially centrally within the annular array at the head end of the combustion chamber. The fluid delivery nozzle includes a first end portion that extends to a second end portion through a wall portion. The wall portion includes at least one combustion chamber outlet. The fluid delivery nozzle is configured to deliver a non-combustible fluid into the at least one of the plurality of combustor nozzles and the combustion chamber.
    Type: Application
    Filed: March 29, 2012
    Publication date: March 19, 2015
    Inventors: Alexander Nikolay Sokolov, Dmitry Vladlenovich Tretyakov, Ilya Aleksandrovich Slobodyanskiy
  • Publication number: 20150052905
    Abstract: Systems and methods for pulse-width modulation of late lean liquid injection velocity can be provided by certain embodiments of the disclosure. In one embodiment, a gas turbine combustor utilizing a late lean injection scheme can be provided, wherein the combustor can include a combustor liner and a transition piece. Methods described herein can allow for dynamic and intelligent adjustment of the late lean injection scheme based on a duty cycle and, optionally, a measured combustion gases temperature profile. The adjustments can involve a pulse-width modification of the duty cycle, which in turn can affect a fuel introduction velocity. Dynamic control of the fuel introduction velocity can provide for improved fuel droplet penetration and moving the heat release zone away from walls of the transitional piece.
    Type: Application
    Filed: August 20, 2013
    Publication date: February 26, 2015
    Applicant: General Electric Company
    Inventors: William Francis Carnell, JR., Ilya Aleksandrovich Slobodyanskiy
  • Publication number: 20150033749
    Abstract: In one embodiment, a system includes a turbine combustor having a combustor liner disposed about a combustion chamber, a head end upstream of the combustion chamber relative to a downstream direction of a flow of combustion gases through the combustion chamber, a flow sleeve disposed at an offset about the combustor liner to define a passage, and a barrier within the passage. The head end is configured to direct an oxidant flow and a first fuel flow toward the combustion chamber. The passage is configured to direct a gas flow toward the head end and to direct a portion of the oxidant flow toward a turbine end of the turbine combustor. The gas flow includes a substantially inert gas. The barrier is configured to block the portion of the oxidant flow toward the turbine end and to block the gas flow toward the head end within the passage.
    Type: Application
    Filed: July 28, 2014
    Publication date: February 5, 2015
    Inventors: Ilya Aleksandrovich Slobodyanskiy, Lewis Berkley Davis, JR., Karl Dean Minto
  • Publication number: 20150000299
    Abstract: A system includes an oxidant compressor and a gas turbine engine turbine, which includes a turbine combustor, a turbine, and an exhaust gas compressor. The turbine combustor includes a plurality of diffusion fuel nozzles, each including a first oxidant conduit configured to inject a first oxidant through a plurality of first oxidant openings configured to impart swirling motion to the first oxidant in a first rotational direction, a first fuel conduit configured to inject a first fuel through a plurality of first fuel openings configured to impart swirling motion to the first fuel in a second rotational direction, and a second oxidant conduit configured to inject a second oxidant through a plurality of second oxidant openings configured to impart swirling motion to the second oxidant in a third rotational direction. The first fuel conduit surrounds the first oxidant conduit and the second oxidant conduit surrounds the first fuel conduit.
    Type: Application
    Filed: June 11, 2014
    Publication date: January 1, 2015
    Inventors: Baifang Zuo, Willy Steve Ziminsky, Christian Xavier Stevenson, Ilya Aleksandrovich Slobodyanskiy
  • Publication number: 20140238034
    Abstract: A turbomachine combustor assembly includes a combustor body having a combustor outlet, and a combustion liner arranged within the combustor body. The combustion liner defines a combustion chamber. An injection nozzle is arranged within the combustor body upstream from the combustion chamber. The injection nozzle is configured and disposed to deliver a first fluid toward the combustion chamber. A fluid module is mounted to the combustor body downstream from the combustion chamber. The fluid module includes a fluid module body that defines a fluid zone, a first injector member mounted to the fluid module body and configured to deliver a second fluid into the fluid zone at a first orientation, and a second injector member mounted to the fluid module body and configured to deliver a third fluid into the fluid zone at a second orientation that is distinct from the first orientation.
    Type: Application
    Filed: November 17, 2011
    Publication date: August 28, 2014
    Applicant: General Electric Company
    Inventors: Ilya Aleksandrovich Slobodyanskiy, Sergey Aleksandrovich Stryapunin, Dmitry Vladlenovich Tretyakov
  • Publication number: 20140150445
    Abstract: A system is provided with a turbine combustor having a first diffusion fuel nozzle, wherein the first diffusion fuel nozzle is configured to produce a diffusion flame. The system includes a turbine driven by combustion products from the diffusion flame in the turbine combustor. The system also includes an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor along an exhaust recirculation path.
    Type: Application
    Filed: October 30, 2013
    Publication date: June 5, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Richard A. Huntington, Sulabh K. Dhanuka, Ilya Aleksandrovich Slobodyanskiy
  • Publication number: 20140123668
    Abstract: A system is provided with a turbine combustor having a first diffusion fuel nozzle, wherein the first diffusion fuel nozzle has first and second passages that separately inject respective first and second flows into a chamber of the turbine combustor to produce a diffusion flame. The first flow includes a first fuel and a first diluent, and the second flow includes a first oxidant. The system includes a turbine driven by combustion products from the diffusion flame in the turbine combustor. The system also includes an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor along an exhaust recirculation path.
    Type: Application
    Filed: October 30, 2013
    Publication date: May 8, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Richard A. Huntington, Sulabh K. Dhanuka, Ilya Aleksandrovich Slobodyanskiy
  • Publication number: 20140123669
    Abstract: A system is provided with a turbine combustor having a first diffusion fuel nozzle, wherein the first diffusion fuel nozzle has first and second passages that separately inject respective first and second flows into a chamber of the turbine combustor to produce a diffusion flame. The first flow includes a first fuel, and the second flow includes a first oxidant and a first diluent. The system includes a turbine driven by combustion products from the diffusion flame in the turbine combustor. The system also includes an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor along an exhaust recirculation path.
    Type: Application
    Filed: October 30, 2013
    Publication date: May 8, 2014
    Applicants: EXXONMOBIL UPSTREAM RESEARCH COMPANY, GENERAL ELECTRIC COMPANY
    Inventors: Richard A. Huntington, Sulabh K. Dhanuka, Ilya Aleksandrovich Slobodyanskiy
  • Publication number: 20140123660
    Abstract: A system includes a turbine combustor, which includes a first wall disposed about a combustion chamber, a second wall disposed about the first wall, and a third wall disposed about the second wall. The third wall is configured to combine an exhaust gas with an oxidant and the combustion chamber is configured to combust a mixture of a fuel, the oxidant, and the exhaust gas.
    Type: Application
    Filed: October 30, 2013
    Publication date: May 8, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Lucas John Stoia, Richard Martin DiCintio, Patrick Benedict Melton, Bryan Wesley Romig, Ilya Aleksandrovich Slobodyanskiy