Patents by Inventor Imran Hashim

Imran Hashim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240105525
    Abstract: Test structures and methods of testing pixel driver chip donor wafers are described. In an embodiment, a redistribution layer is formed over a pixel driver chip donor wafer and probed to determine known good dies, followed by removal of the RDL. In other embodiments, test routing is formed in the pixel driver chip using a polycide material or doped region in the semiconductor wafer.
    Type: Application
    Filed: July 25, 2023
    Publication date: March 28, 2024
    Inventors: Imran Hashim, Xiang Lu, Stanley B. Wang, Xuchun Liu, Mahdi Farrokh Baroughi, Yongjie Jiang, Hopil Bae, Hasan Akyol, Baris Posat, John T. Wetherell, Lei Wu
  • Patent number: 10923023
    Abstract: Hybrid chiplets, display backplanes, and displays with integrated hybrid chiplets are described. In an embodiment, a hybrid chiplet includes a micro LED chiplet stacked on a micro driver chiplet that includes at least one drive transistor and a bottom side including a plurality of bottom chiplet contacts for electrical connection with a display backplane.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: February 16, 2021
    Inventors: Andreas Bibl, Xia Li, John A. Higginson, Vaibhav D. Patel, Kapil V. Sakariya, Imran Hashim, Tore Nauta, Thomas Charisoulis
  • Patent number: 10497682
    Abstract: Display integration schemes are described for passivating LEDs and providing conductive terminal connections. In accordance with embodiments, a sidewall passivation layer is formed around the LEDs. The sidewall passivation layer may or may not be contained within a well structure. A top electrode layer is formed to electrically connect the LEDs to conductive terminal routing.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: December 3, 2019
    Assignee: Apple Inc.
    Inventors: Imran Hashim, Vaibhav D. Patel, Hsin-Hua Hu, Kapil V. Sakariya, Ralph E. Kauffman
  • Publication number: 20190006329
    Abstract: Display integration schemes are described for passivating LEDs and providing conductive terminal connections. In accordance with embodiments, a sidewall passivation layer is formed around the LEDs. The sidewall passivation layer may or may not be contained within a well structure. A top electrode layer is formed to electrically connect the LEDs to conductive terminal routing.
    Type: Application
    Filed: January 11, 2017
    Publication date: January 3, 2019
    Inventors: Imran Hashim, Vaibhav D. Patel, Hsin-Hua Hu, Kapil V. Sakariya, Ralph E. Kauffman
  • Patent number: 9543516
    Abstract: Methods for producing RRAM resistive switching elements having reduced forming voltage include doping to create oxygen deficiencies in the dielectric film. Oxygen deficiencies in a dielectric film promote formation of conductive pathways.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: January 10, 2017
    Assignees: Intermolecular, Inc., SanDisk 3D LLC, Kabushiki Kaisha Toshiba
    Inventors: Jinhong Tong, Randall Higuchi, Imran Hashim, Vidyut Gopal
  • Patent number: 9444047
    Abstract: Provided are nonvolatile memory assemblies each including a resistive switching layer and current steering element. The steering element may be a transistor connected in series with the switching layer. Resistance control provided by the steering element allows using switching layers requiring low switching voltages and currents. Memory assemblies including such switching layers are easier to embed into integrated circuit chips having other low voltage components, such as logic and digital signal processing components, than, for example, flash memory requiring much higher switching voltages. In some embodiments, provided nonvolatile memory assemblies operate at switching voltages less than about 3.0V and corresponding currents less than 50 microamperes. A memory element may include a metal rich hafnium oxide disposed between a titanium nitride electrode and doped polysilicon electrode. One electrode may be connected to a drain or source of the transistor, while another electrode is connected to a signal line.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: September 13, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Imran Hashim, Tony P. Chiang, Vidyut Gopal, Yun Wang
  • Patent number: 9397141
    Abstract: Selector devices that can be suitable for memory device applications can have low leakage currents at low voltages to reduce sneak current paths for non selected devices, and high leakage currents at high voltages to minimize voltage drops during device switching. In some embodiments, the selector device can include a first electrode, a tri-layer dielectric layer, and a second electrode. The tri-layer dielectric layer can include a high leakage dielectric layer sandwiched between two lower leakage dielectric layers. The low leakage layers can function to restrict the current flow across the selector device at low voltages. The high leakage dielectric layer can function to enhance the current flow across the selector device at high voltages.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: July 19, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Imran Hashim, Venkat Ananthan, Tony P. Chiang, Prashant B. Phatak
  • Publication number: 20160172588
    Abstract: Methods for producing RRAM resistive switching elements having reduced forming voltage include doping to create oxygen deficiencies in the dielectric film. Oxygen deficiencies in a dielectric film promote formation of conductive pathways.
    Type: Application
    Filed: June 27, 2014
    Publication date: June 16, 2016
    Inventors: Jinhong Tong, Randall Higuchi, Imran Hashim, Vidyut Gopal
  • Patent number: 9305791
    Abstract: Combinatorial workflow is provided for evaluating materials and processes for current selector devices in a cross point memory array. Blanket layers, metal-insulator-metal devices, and compete memory structures are combinatorially fabricated on multiple regions of a substrate, with each region having a different material and process condition for the current selector devices. The current selector devices are then characterized, and the data are compared to obtain the optimum materials and processes.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: April 5, 2016
    Assignee: Intermolecular, Inc.
    Inventor: Imran Hashim
  • Publication number: 20160093625
    Abstract: A first electrode layer for a Metal-Insulator-Metal (MIM) DRAM capacitor is formed wherein the first electrode layer contains a conductive base layer and conductive metal oxide layer. The dielectric layer may include zirconium oxide or doped zirconium oxide. In some embodiments, the conductive metal oxide layer includes niobium oxide.
    Type: Application
    Filed: September 30, 2014
    Publication date: March 31, 2016
    Inventors: Xiangxin Rui, Imran Hashim, Prashant B. Phatak
  • Patent number: 9299926
    Abstract: Embodiments of the invention include a method of forming a nonvolatile memory device that contains a resistive switching memory element with improved device switching performance and lifetime, due to the addition of a current limiting component. In one embodiment, the current limiting component comprises a resistive material configured to improve the switching performance and lifetime of the resistive switching memory element. The electrical properties of the current limiting layer are configured to lower the current flow through the variable resistance layer during the logic state programming steps by adding a fixed series resistance in the resistive switching memory element found in the nonvolatile memory device. In one embodiment, the current limiting component comprises a tunnel oxide layer that is a current limiting material and an oxygen barrier layer that is an oxygen deficient material disposed within a resistive switching memory element in a nonvolatile resistive switching memory device.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: March 29, 2016
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Mihir Tendulkar, Imran Hashim, Yun Wang, Tim Minvielle, Takeshi Yamaguchi
  • Patent number: 9299928
    Abstract: Embodiments of the invention generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has an improved device switching performance and lifetime, due to the addition of a current limiting component disposed therein. In one embodiment, the current limiting component comprises at least one layer of resistive material that is configured to improve the switching performance and lifetime of the formed resistive switching memory element. The electrical properties of the formed current limiting layer, or resistive layer, are configured to lower the current flow through the variable resistance layer during the logic state programming steps (i.e., “set” and “reset” steps) by adding a fixed series resistance in the formed resistive switching memory element found in the nonvolatile memory device.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: March 29, 2016
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Tony P. Chiang, Imran Hashim
  • Patent number: 9281357
    Abstract: A method for forming a capacitor stack includes forming a first bottom electrode layer including a conductive metal nitride material. A second bottom electrode layer is formed above the first bottom electrode layer. The second bottom electrode layer includes a conductive metal oxide material, wherein the crystal structure of the conductive metal oxide material promotes a desired high-k crystal phase of a subsequently deposited dielectric layer. A dielectric layer is formed above the second bottom electrode layer. Optionally, an oxygen-rich metal oxide layer is formed above the dielectric layer. Optionally, a third top electrode layer is formed above the oxygen-rich metal oxide layer. The third top electrode layer includes a conductive metal oxide material. A fourth top electrode layer is formed above the third top electrode layer. The fourth top electrode layer includes a conductive metal nitride material.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: March 8, 2016
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, David Chi, Imran Hashim, Mitsuhiro Horikawa, Sandra G. Malhotra
  • Patent number: 9275913
    Abstract: Designs and programming schemes can be used to form memory arrays having low power, high density and good data retention. High resistance interconnect lines can be used to partition the memory array can be partitioned into areas of high data retention and areas of low data retention. Variable gate voltages can be used in control transistors to store memory values having different data retention characteristics.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: March 1, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Yun Wang, Imran Hashim
  • Patent number: 9246097
    Abstract: Provided are resistive random access memory (ReRAM) cells having diffusion barrier layers formed from various materials, such as beryllium oxide or titanium silicon nitrides. Resistive switching layers used in ReRAM cells often need to have at least one inert interface such that substantially no materials pass through this interface. The other (reactive) interface may be used to introduce and remove defects from the resistive switching layers causing the switching. While some electrode materials, such as platinum and doped polysilicon, may form inert interfaces, these materials are often difficult to integrate. To expand electrode material options, a diffusion barrier layer is disposed between an electrode and a resistive switching layer and forms the inert interface with the resistive switching layer. In some embodiments, tantalum nitride and titanium nitride may be used for electrodes separated by such diffusion barrier layers.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: January 26, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Yun Wang, Imran Hashim
  • Patent number: 9246096
    Abstract: Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack which contains at least one hard metal oxide film (e.g., metal is completely oxidized or substantially oxidized) and at least one soft metal oxide film (e.g., metal is less oxidized than hard metal oxide). The soft metal oxide film is less electrically resistive than the hard metal oxide film since the soft metal oxide film is less oxidized or more metallic than the hard metal oxide film. In one example, the hard metal oxide film is formed by an ALD process utilizing ozone as the oxidizing agent while the soft metal oxide film is formed by another ALD process utilizing water vapor as the oxidizing agent.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: January 26, 2016
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Zhendong Hong, Vidyut Gopal, Imran Hashim, Randall J. Higuchi, Tim Minvielle, Hieu Pham, Takeshi Yamaguchi
  • Publication number: 20150325788
    Abstract: Provided are nonvolatile memory assemblies each including a resistive switching layer and current steering element. The steering element may be a transistor connected in series with the switching layer. Resistance control provided by the steering element allows using switching layers requiring low switching voltages and currents. Memory assemblies including such switching layers are easier to embed into integrated circuit chips having other low voltage components, such as logic and digital signal processing components, than, for example, flash memory requiring much higher switching voltages. In some embodiments, provided nonvolatile memory assemblies operate at switching voltages less than about 3.0V and corresponding currents less than 50 microamperes. A memory element may include a metal rich hafnium oxide disposed between a titanium nitride electrode and doped polysilicon electrode. One electrode may be connected to a drain or source of the transistor, while another electrode is connected to a signal line.
    Type: Application
    Filed: July 22, 2015
    Publication date: November 12, 2015
    Inventors: Imran Hashim, Tony P. Chiang, Vidyut Gopal, Yun Wang
  • Patent number: 9184383
    Abstract: Embodiments of the invention generally relate to a resistive switching nonvolatile memory device having an interface layer structure disposed between at least one of the electrodes and a variable resistance layer formed in the nonvolatile memory device, and a method of forming the same. Typically, resistive switching memory elements may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices, such as digital cameras, mobile telephones, handheld computers, and music players. In one configuration of the resistive switching nonvolatile memory device, the interface layer structure comprises a passivation region, an interface coupling region, and/or a variable resistance layer interface region that are configured to adjust the nonvolatile memory device's performance, such as lowering the formed device's switching currents and reducing the device's forming voltage, and reducing the performance variation from one formed device to another.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: November 10, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Tony P. Chiang, Imran Hashim
  • Patent number: 9178147
    Abstract: Resistive-switching memory elements having improved switching characteristics are described, including a memory element having a first electrode and a second electrode, a switching layer between the first electrode and the second electrode comprising hafnium oxide and having a first thickness, and a coupling layer between the switching layer and the second electrode, the coupling layer comprising a material including metal titanium and having a second thickness that is less than 25 percent of the first thickness.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: November 3, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Ronald J. Kuse, Tony P. Chiang, Imran Hashim
  • Patent number: 9178146
    Abstract: Resistive-switching memory elements having improved switching characteristics are described, including a memory element having a first electrode and a second electrode, a switching layer between the first electrode and the second electrode comprising hafnium oxide and having a first thickness, and a coupling layer between the switching layer and the second electrode, the coupling layer comprising a material including metal titanium and having a second thickness that is less than 25 percent of the first thickness.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: November 3, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Ronald J. Kuse, Tony P. Chiang, Imran Hashim