Patents by Inventor Imran Hashim

Imran Hashim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9177998
    Abstract: MIMCAP devices are provided that can be suitable for memory device applications, such as current selector devices for cross point memory array. The MIMCAP devices can have lower thermal budget as compared to Schottky diodes and controllable lower barrier height and lower series resistance as compared to MIMCAP tunneling diodes. The MIMCAP diode can include a low defect dielectric layer, a high defect dielectric layer, sandwiched between two electrodes having different work function values.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: November 3, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Venkat Ananthan, Imran Hashim, Prashant B. Phatak
  • Patent number: 9178151
    Abstract: Embodiments of the invention generally relate to a resistive switching nonvolatile memory device having an interface layer structure disposed between at least one of the electrodes and a variable resistance layer formed in the nonvolatile memory device, and a method of forming the same. Typically, resistive switching memory elements may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices, such as digital cameras, mobile telephones, handheld computers, and music players. In one configuration of the resistive switching nonvolatile memory device, the interface layer structure comprises a passivation region, an interface coupling region, and/or a variable resistance layer interface region that are configured to adjust the nonvolatile memory device's performance, such as lowering the formed device's switching currents and reducing the device's forming voltage, and reducing the performance variation from one formed device to another.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: November 3, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Tony P. Chiang, Imran Hashim
  • Patent number: 9178006
    Abstract: A method for reducing the leakage current in DRAM MIM capacitors comprises forming a multi-layer dielectric stack from an amorphous highly doped material, an amorphous high band gap material, and a lightly-doped or non-doped material. The highly doped material will remain amorphous (<30% crystalline) after an anneal step. The high band gap material will remain amorphous (<30% crystalline) after an anneal step. The lightly-doped or non-doped material will become crystalline (?30% crystalline) after an anneal step. The high band gap material is formed between the amorphous highly doped material and the lightly or non-doped material and provides an intermediate barrier to conduction through the multi-layer dielectric stack.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: November 3, 2015
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Xiangxin Rui, Hanhong Chen, Naonori Fujiwara, Imran Hashim, Kenichi Koyanagi
  • Patent number: 9178148
    Abstract: Provided are resistive random access memory (ReRAM) cells, each having three or more resistive states and being capable of storing multiple bits of data, as well as methods of fabricating and operating such ReRAM cells. Such ReRAM cells or, more specifically, their resistive switching layer have wide range of resistive states and are capable of being very conductive (e.g., about 1 kOhm) in one state and very resistive (e.g., about 1 MOhm) in another state. In some embodiments, a resistance ratio between resistive states may be between 10 and 1,000 even up to 10,000. The resistive switching layers also allow establishing stable and distinct intermediate resistive states that may be assigned different data values. These layers may be configured to switching between their resistive states using fewer programming pulses than conventional systems by using specific materials, switching pluses, and resistive state threshold.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: November 3, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Imran Hashim, Ryan C. Clarke, Nan Lu, Tim Minvielle, Takeshi Yamaguchi
  • Patent number: 9130165
    Abstract: Embodiments of the invention generally relate to nonvolatile memory devices, such as a ReRAM cells, and methods for manufacturing such memory devices, which includes optimized, atomic layer deposition (ALD) processes for forming metal oxide film stacks. The metal oxide film stacks contain a metal oxide coupling layer disposed on a metal oxide host layer, each layer having different grain structures/sizes. The interface disposed between the metal oxide layers facilitates oxygen vacancy movement. In many examples, the interface is a misaligned grain interface containing numerous grain boundaries extending parallel to the electrode interfaces, in contrast to the grains in the bulk film extending perpendicular to the electrode interfaces. As a result, oxygen vacancies are trapped and released during switching without significant loss of vacancies.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: September 8, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Tony P. Chiang, Vidyut Gopal, Imran Hashim, Dipankar Pramanik
  • Patent number: 9129894
    Abstract: Provided are nonvolatile memory assemblies each including a resistive switching layer and current steering element. The steering element may be a transistor connected in series with the switching layer. Resistance control provided by the steering element allows using switching layers requiring low switching voltages and currents. Memory assemblies including such switching layers are easier to embed into integrated circuit chips having other low voltage components, such as logic and digital signal processing components, than, for example, flash memory requiring much higher switching voltages. In some embodiments, provided nonvolatile memory assemblies operate at switching voltages less than about 3.0V and corresponding currents less than 50 microamperes. A memory element may include a metal rich hafnium oxide disposed between a titanium nitride electrode and doped polysilicon electrode. One electrode may be connected to a drain or source of the transistor, while another electrode is connected to a signal line.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: September 8, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Imran Hashim, Tony Chiang, Vidyut Gopal, Yun Wang
  • Publication number: 20150228710
    Abstract: A method for reducing the leakage current in DRAM MIM capacitors comprises forming a multi-layer dielectric stack from an amorphous highly doped material, an amorphous high band gap material, and a lightly-doped or non-doped material. The highly doped material will remain amorphous (<30% crystalline) after an anneal step. The high band gap material will remain amorphous (<30% crystalline) after an anneal step. The lightly-doped or non-doped material will become crystalline (?30% crystalline) after an anneal step. The high band gap material is formed between the amorphous highly doped material and the lightly or non-doped material and provides an intermediate barrier to conduction through the multi-layer dielectric stack.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 13, 2015
    Applicants: Elpida Memory, Inc, Intermolecular, Inc.
    Inventors: Xiangxin Rui, Hanhong Chen, Naonori Fujiwara, Imran Hashim, Kenichi Koyanagi
  • Patent number: 9099430
    Abstract: A zirconium oxide based dielectric material is used in the formation of decoupling capacitors employed in microelectronic logic circuits. In some embodiments, the zirconium oxide based dielectric is doped. In some embodiments, the dopant includes at least one of aluminum, silicon, or yttrium. In some embodiments, the zirconium oxide based dielectric is formed as a nanolaminate of zirconium oxide and a dopant metal oxide.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: August 4, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Imran Hashim, Xiangxin Rui
  • Patent number: 9087978
    Abstract: Embodiments of the invention include nonvolatile memory elements and memory devices comprising the nonvolatile memory elements. Methods for forming the nonvolatile memory elements are also disclosed. The nonvolatile memory element comprises a first electrode layer, a second electrode layer, and a plurality of layers of an oxide disposed between the first and second electrode layers. One of the oxide layers has linear resistance and substoichiometric composition, and the other oxide layer has bistable resistance and near-stoichiometric composition. Preferably, the sum of the two oxide layer thicknesses is between about 20 ? and about 100 ?, and the oxide layer with bistable resistance has a thickness between about 25% and about 75% of the total thickness. In one embodiment, the oxide layers are formed using reactive sputtering in an atmosphere with controlled flows of argon and oxygen.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: July 21, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Hieu Pham, Vidyut Gopal, Imran Hashim, Tim Minvielle, Yun Wang, Takeshi Yamaguchi, Hong Sheng Yang
  • Publication number: 20150200361
    Abstract: Embodiments of the invention include nonvolatile memory elements and memory devices comprising the nonvolatile memory elements. Methods for forming the nonvolatile memory elements are also disclosed. The nonvolatile memory element comprises a first electrode layer, a second electrode layer, and a plurality of layers of an oxide disposed between the first and second electrode layers. One of the oxide layers has linear resistance and substoichiometric composition, and the other oxide layer has bistable resistance and near-stoichiometric composition. Preferably, the sum of the two oxide layer thicknesses is between about 20 ? and about 100 ?, and the oxide layer with bistable resistance has a thickness between about 25% and about 75% of the total thickness. In one embodiment, the oxide layers are formed using reactive sputtering in an atmosphere with controlled flows of argon and oxygen.
    Type: Application
    Filed: February 10, 2015
    Publication date: July 16, 2015
    Inventors: Hieu Pham, Vidyut Gopal, Imran Hashim, Tim Minvielle, Yun Wang, Takeshi Yamaguchi, Hong Sheng Yang
  • Publication number: 20150188048
    Abstract: Provided are resistive random access memory (ReRAM) cells having diffusion barrier layers formed from various materials, such as beryllium oxide or titanium silicon nitrides. Resistive switching layers used in ReRAM cells often need to have at least one inert interface such that substantially no materials pass through this interface. The other (reactive) interface may be used to introduce and remove defects from the resistive switching layers causing the switching. While some electrode materials, such as platinum and doped polysilicon, may form inert interfaces, these materials are often difficult to integrate. To expand electrode material options, a diffusion barrier layer is disposed between an electrode and a resistive switching layer and forms the inert interface with the resistive switching layer. In some embodiments, tantalum nitride and titanium nitride may be used for electrodes separated by such diffusion barrier layers.
    Type: Application
    Filed: March 11, 2015
    Publication date: July 2, 2015
    Inventors: Yun Wang, Imran Hashim
  • Publication number: 20150179935
    Abstract: Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack which contains at least one hard metal oxide film (e.g., metal is completely oxidized or substantially oxidized) and at least one soft metal oxide film (e.g., metal is less oxidized than hard metal oxide). The soft metal oxide film is less electrically resistive than the hard metal oxide film since the soft metal oxide film is less oxidized or more metallic than the hard metal oxide film. In one example, the hard metal oxide film is formed by an ALD process utilizing ozone as the oxidizing agent while the soft metal oxide film is formed by another ALD process utilizing water vapor as the oxidizing agent.
    Type: Application
    Filed: February 17, 2015
    Publication date: June 25, 2015
    Inventors: Zhendong Hong, Vidyut Gopal, Imran Hashim, Randall J. Higuchi, Tim Minvielle, Hieu Pham, Takeshi Yamaguchi
  • Publication number: 20150179730
    Abstract: A zirconium oxide based dielectric material is used in the formation of decoupling capacitors employed in microelectronic logic circuits. In some embodiments, the zirconium oxide based dielectric is doped. In some embodiments, the dopant includes at least one of aluminum, silicon, or yttrium. In some embodiments, the zirconium oxide based dielectric is formed as a nanolaminate of zirconium oxide and a dopant metal oxide.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 25, 2015
    Applicant: Intermolecular, Inc.
    Inventors: Imran Hashim, Xiangxin Rui
  • Publication number: 20150171095
    Abstract: Designs and programming schemes can be used to form memory arrays having low power, high density and good data retention. High resistance interconnect lines can be used to partition the memory array can be partitioned into areas of high data retention and areas of low data retention. Variable gate voltages can be used in control transistors to store memory values having different data retention characteristics.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Applicant: Intermolecular, Inc.
    Inventors: Yun Wang, Imran Hashim
  • Publication number: 20150170837
    Abstract: A hafnium oxide-aluminum oxide-hafnium oxide (HAH) based multilayer stack is used as the dielectric material in the formation of decoupling capacitors employed in microelectronic logic circuits. In some embodiments, the thickness of the aluminum oxide layer in the HAH multilayer stack varies between 0.1 nm and 1 nm. In some embodiments, the thickness of the two hafnium oxide layers varies between about 3.0 nm and 4.5 nm.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Applicant: Intermolecular, Inc.
    Inventors: Sucharita Madhukar, Nobumichi Fuchigami, Imran Hashim, Wen Wu
  • Publication number: 20150171323
    Abstract: Provided are resistive random access memory (ReRAM) cells, each having three or more resistive states and being capable of storing multiple bits of data, as well as methods of fabricating and operating such ReRAM cells. Such ReRAM cells or, more specifically, their resistive switching layer have wide range of resistive states and are capable of being very conductive (e.g., about 1 kOhm) in one state and very resistive (e.g., about 1 MOhm) in another state. In some embodiments, a resistance ratio between resistive states may be between 10 and 1,000 even up to 10,000. The resistive switching layers also allow establishing stable and distinct intermediate resistive states that may be assigned different data values. These layers may be configured to switching between their resistive states using fewer programming pulses than conventional systems by using specific materials, switching pluses, and resistive state threshold.
    Type: Application
    Filed: March 3, 2015
    Publication date: June 18, 2015
    Inventors: Imran Hashim, Ryan C. Clarke, Nan Lu, Tim Minvielle, Takeshi Yamaguchi
  • Publication number: 20150162530
    Abstract: Embodiments of the invention generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has an improved device switching performance and lifetime, due to the addition of a current limiting component disposed therein. In one embodiment, the current limiting component comprises at least one layer of resistive material that is configured to improve the switching performance and lifetime of the formed resistive switching memory element. The electrical properties of the formed current limiting layer, or resistive layer, are configured to lower the current flow through the variable resistance layer during the logic state programming steps (i.e., “set” and “reset” steps) by adding a fixed series resistance in the formed resistive switching memory element found in the nonvolatile memory device.
    Type: Application
    Filed: February 19, 2015
    Publication date: June 11, 2015
    Inventors: Yun Wang, Tony P. Chiang, Imran Hashim
  • Patent number: 9054307
    Abstract: Provided are semiconductor devices, such as resistive random access memory (ReRAM) cells, that include current limiting layers formed from alloys of transition metals. Some examples of such alloys include chromium containing alloys that may also include nickel, aluminum, and/or silicon. Other examples include tantalum and/or titanium containing alloys that may also include a combination of silicon and carbon or a combination of aluminum and nitrogen. These current limiting layers may have resistivities of at least about 1 Ohm-cm. This resistivity level is maintained even when the layers are subjected to strong electrical fields and/or high temperature processing. In some embodiments, the breakdown voltage of a current limiting layer is at least about 8V. The high resistivity of the layers allows scaling down the size of the semiconductor devices including these layers while maintaining their performance.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: June 9, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Tony P. Chiang, Imran Hashim, Tim Minvielle, Dipankar Pramanik, Takeshi Yamaguchi
  • Publication number: 20150155486
    Abstract: Resistive-switching memory elements having improved switching characteristics are described, including a memory element having a first electrode and a second electrode, a switching layer between the first electrode and the second electrode comprising hafnium oxide and having a first thickness, and a coupling layer between the switching layer and the second electrode, the coupling layer comprising a material including metal titanium and having a second thickness that is less than 25 percent of the first thickness.
    Type: Application
    Filed: February 11, 2015
    Publication date: June 4, 2015
    Inventors: Ronald J. Kuse, Tony P. Chiang, Imran Hashim
  • Publication number: 20150137315
    Abstract: A method for forming a capacitor stack includes forming a first bottom electrode layer including a conductive metal nitride material. A second bottom electrode layer is formed above the first bottom electrode layer. The second bottom electrode layer includes a conductive metal oxide material, wherein the crystal structure of the conductive metal oxide material promotes a desired high-k crystal phase of a subsequently deposited dielectric layer. A dielectric layer is formed above the second bottom electrode layer. Optionally, an oxygen-rich metal oxide layer is formed above the dielectric layer. Optionally, a third top electrode layer is formed above the oxygen-rich metal oxide layer. The third top electrode layer includes a conductive metal oxide material. A fourth top electrode layer is formed above the third top electrode layer. The fourth top electrode layer includes a conductive metal nitride material.
    Type: Application
    Filed: January 19, 2015
    Publication date: May 21, 2015
    Inventors: Hanhong Chen, David Chi, Imran Hashim, Mitsuhiro Horikawa, Sandra G. Malhotra