Patents by Inventor Imran Hashim
Imran Hashim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8618525Abstract: Embodiments of the invention generally relate to a resistive switching nonvolatile memory device having an interface layer structure disposed between at least one of the electrodes and a variable resistance layer formed in the nonvolatile memory device, and a method of forming the same. Typically, resistive switching memory elements may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices, such as digital cameras, mobile telephones, handheld computers, and music players. In one configuration of the resistive switching nonvolatile memory device, the interface layer structure comprises a passivation region, an interface coupling region, and/or a variable resistance layer interface region that are configured to adjust the nonvolatile memory device's performance, such as lowering the formed device's switching currents and reducing the device's forming voltage, and reducing the performance variation from one formed device to another.Type: GrantFiled: June 9, 2011Date of Patent: December 31, 2013Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLCInventors: Yun Wang, Tony Chiang, Imran Hashim
-
Publication number: 20130341584Abstract: Resistive-switching memory elements having improved switching characteristics are described, including a memory element having a first electrode and a second electrode, a switching layer between the first electrode and the second electrode comprising hafnium oxide and having a first thickness, and a coupling layer between the switching layer and the second electrode, the coupling layer comprising a material including metal titanium and having a second thickness that is less than 25 percent of the first thickness.Type: ApplicationFiled: August 23, 2013Publication date: December 26, 2013Applicant: Intermolecular, Inc.Inventors: Ronald J. Kuse, Tony P. Chiang, Imran Hashim
-
Publication number: 20130334490Abstract: Embodiments of the invention include nonvolatile memory elements and memory devices comprising the nonvolatile memory elements. Methods for forming the nonvolatile memory elements are also disclosed. The nonvolatile memory element comprises a first electrode layer, a second electrode layer, and a plurality of layers of an oxide disposed between the first and second electrode layers. One of the oxide layers has linear resistance and substoichiometric composition, and the other oxide layer has bistable resistance and near-stoichiometric composition. Preferably, the sum of the two oxide layer thicknesses is between about 20 ? and about 100 ?, and the oxide layer with bistable resistance has a thickness between about 25% and about 75% of the total thickness. In one embodiment, the oxide layers are formed using reactive sputtering in an atmosphere with controlled flows of argon and oxygen.Type: ApplicationFiled: August 20, 2013Publication date: December 19, 2013Applicants: Intermolecular Inc., SanDisk 3D LLC, Kabushiki Kaisha ToshibaInventors: Hieu Pham, Vidyut Gopal, Imran Hashim, Tim Minvielle, Yun Wang, Takeshi Yamaguchi, Hong Sheng Yang
-
Publication number: 20130334484Abstract: Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack having a metal oxide buffer layer disposed on or over a metal oxide bulk layer. The metal oxide bulk layer contains a metal-rich oxide material and the metal oxide buffer layer contains a metal-poor oxide material. The metal oxide bulk layer is less electrically resistive than the metal oxide buffer layer since the metal oxide bulk layer is less oxidized or more metallic than the metal oxide buffer layer. In one example, the metal oxide bulk layer contains a metal-rich hafnium oxide material and the metal oxide buffer layer contains a metal-poor zirconium oxide material.Type: ApplicationFiled: August 21, 2013Publication date: December 19, 2013Applicants: Intermolecular Inc., SanDisk 3D LLC, Kabushiki Kaisha ToshibaInventors: Yun Wang, Tony P. Chiang, Vidyut Gopal, Imran Hashim, Dipankar Pramanik
-
Patent number: 8574985Abstract: Methods for depositing high-K dielectrics are described, including depositing a first electrode on a substrate, wherein the first electrode is chosen from the group consisting of platinum and ruthenium, applying an oxygen plasma treatment to the exposed metal to reduce the contact angle of a surface of the metal, and depositing a titanium oxide layer on the exposed metal using at least one of a chemical vapor deposition process and an atomic layer deposition process, wherein the titanium oxide layer comprises at least a portion rutile titanium oxide.Type: GrantFiled: March 3, 2011Date of Patent: November 5, 2013Assignees: Intermolecular, Inc., Elpida Memory, Inc.Inventors: Xiangxin Rui, Sunil Shanker, Sandra Malhotra, Imran Hashim, Edward Haywood
-
Publication number: 20130285695Abstract: In embodiments of the current invention, methods of combinatorial processing and a test chip for use in these methods are described. These methods and test chips enable the efficient development of materials, processes, and process sequence integration schemes for semiconductor manufacturing processes. In general, the methods simplify the processing sequence of forming devices or partially formed devices on a test chip such that the devices can be tested immediately after formation. The immediate testing allows for the high throughput testing of varied materials, processes, or process sequences on the test chip. The test chip has multiple site isolated regions where each of the regions is varied from one another and the test chip is designed to enable high throughput testing of the different regions.Type: ApplicationFiled: July 1, 2013Publication date: October 31, 2013Inventors: Gaurav Verma, Tony P. Chiang, Imran Hashim, Sandra G. Malhotra, Prashant B. Phatak, Kurt H. Weiner
-
Patent number: 8569104Abstract: Embodiments of the invention include nonvolatile memory elements and memory devices comprising the nonvolatile memory elements. Methods for forming the nonvolatile memory elements are also disclosed. The nonvolatile memory element comprises a first electrode layer, a second electrode layer, and a plurality of layers of an oxide disposed between the first and second electrode layers. One of the oxide layers has linear resistance and substoichiometric composition, and the other oxide layer has bistable resistance and near-stoichiometric composition. Preferably, the sum of the two oxide layer thicknesses is between about 20 ? and about 100 ?, and the oxide layer with bistable resistance has a thickness between about 25% and about 75% of the total thickness. In one embodiment, the oxide layers are formed using reactive sputtering in an atmosphere with controlled flows of argon and oxygen.Type: GrantFiled: February 7, 2012Date of Patent: October 29, 2013Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLCInventors: Hieu Pham, Vidyut Gopal, Imran Hashim, Tim Minvielle, Yun Wang, Takeshi Yamaguchi, Hong Sheng Yang
-
Patent number: 8551851Abstract: This disclosure provides (a) methods of making an oxide layer (e.g., a dielectric layer) based on titanium oxide, to suppress the formation of anatase-phase titanium oxide and (b) related devices and structures. A metal-insulator-metal (“MIM”) stack is formed using an ozone pretreatment process of a bottom electrode (or other substrate) followed by an ALD process to form a TiO2 dielectric, rooted in the use of an amide-containing precursor. Following the ALD process, an oxidizing anneal process is applied in a manner is hot enough to heal defects in the TiO2 dielectric and reduce interface states between TiO2 and electrode; the anneal temperature is selected so as to not be so hot as to disrupt BEL surface roughness. Further process variants may include doping the titanium oxide, pedestal heating during the ALD process to 275-300 degrees Celsius, use of platinum or ruthenium for the BEL, and plural reagent pulses of ozone for each ALD process cycle.Type: GrantFiled: May 4, 2011Date of Patent: October 8, 2013Assignee: Intermolecular, Inc.Inventors: Hanhong Chen, Pragati Kumar, Sunil Shanker, Edward Haywood, Sandra Malhotra, Imran Hashim, Nobi Fuchigami, Prashant Phatak, Monica Mathur
-
Patent number: 8546275Abstract: Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack having a metal oxide buffer layer disposed on or over a metal oxide bulk layer. The metal oxide bulk layer contains a metal-rich oxide material and the metal oxide buffer layer contains a metal-poor oxide material. The metal oxide bulk layer is less electrically resistive than the metal oxide buffer layer since the metal oxide bulk layer is less oxidized or more metallic than the metal oxide buffer layer. In one example, the metal oxide bulk layer contains a metal-rich hafnium oxide material and the metal oxide buffer layer contains a metal-poor zirconium oxide material.Type: GrantFiled: September 19, 2011Date of Patent: October 1, 2013Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLCInventors: Yun Wang, Vidyut Gopal, Imran Hashim, Dipankar Pramanik, Tony Chiang
-
Patent number: 8541828Abstract: Methods for depositing high-K dielectrics are described, including depositing a first electrode on a substrate, wherein the first electrode is chosen from the group consisting of platinum and ruthenium, applying an oxygen plasma treatment to the exposed metal to reduce the contact angle of a surface of the metal, and depositing a titanium oxide layer on the exposed metal using at least one of a chemical vapor deposition process and an atomic layer deposition process, wherein the titanium oxide layer includes at least a portion of rutile titanium oxide.Type: GrantFiled: November 5, 2012Date of Patent: September 24, 2013Assignee: Intermolecular, Inc.Inventors: Imran Hashim, Edward L. Haywood, Sandra G. Malhotra, Xiangxin Rui, Sunil Shanker
-
Publication number: 20130228735Abstract: A nonvolatile resistive memory element includes a host oxide formed from an interfacial oxide layer. The interfacial oxide layer is formed on the surface of a deposited electrode layer via in situ or post-deposition surface oxidation treatments. The switching performance of a resistive memory device based on such an interfacial oxide layer is equivalent or superior to the performance of a conventional resistive memory element.Type: ApplicationFiled: March 1, 2012Publication date: September 5, 2013Applicant: Intermolecular, Inc.Inventors: Randall Higuchi, Tony P. Chiang, Ryan Clarke, Vidyut Gopal, Imran Hashim, Robert Huertas, Yun Wang
-
Publication number: 20130221307Abstract: A nonvolatile resistive memory element includes one or more novel oxygen isolation structures that protect the resistive switching material of the memory element from oxygen migration. One such oxygen isolation structure comprises an oxygen barrier layer that isolates the resistive switching material from other portions of the resistive memory device during fabrication and/or operation of the memory device. Another such oxygen isolation structure comprises a sacrificial layer that reacts with unwanted oxygen migrating toward the resistive switching material during fabrication and/or operation of the memory device.Type: ApplicationFiled: February 29, 2012Publication date: August 29, 2013Applicant: Intermolecular, Inc.Inventors: Yun Wang, Tony P. Chiang, Imran Hashim, Dipankar Pramanik
-
Publication number: 20130214232Abstract: Embodiments of the invention include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has improved device switching performance and lifetime, due to the addition of a current limiting component disposed therein. The electrical properties of the current limiting component are configured to lower the current flow through the variable resistance layer during the logic state programming steps by adding a fixed series resistance in the resistive switching memory element of the nonvolatile memory device. In some embodiments, the current limiting component comprises a varistor that is a current limiting material disposed within a resistive switching memory element in a nonvolatile resistive switching memory device.Type: ApplicationFiled: February 17, 2012Publication date: August 22, 2013Applicant: Intermolecular, Inc.Inventors: Mihir Tendulkar, Imran Hashim, Yun Wang
-
Publication number: 20130214237Abstract: Embodiments of the invention include a method of forming a nonvolatile memory device that contains a resistive switching memory element with improved device switching performance and lifetime, due to the addition of a current limiting component. In one embodiment, the current limiting component comprises a resistive material configured to improve the switching performance and lifetime of the resistive switching memory element. The electrical properties of the current limiting layer are configured to lower the current flow through the variable resistance layer during the logic state programming steps by adding a fixed series resistance in the resistive switching memory element found in the nonvolatile memory device. In one embodiment, the current limiting component comprises a tunnel oxide layer that is a current limiting material and an oxygen barrier layer that is an oxygen deficient material disposed within a resistive switching memory element in a nonvolatile resistive switching memory device.Type: ApplicationFiled: February 17, 2012Publication date: August 22, 2013Applicant: Intermolecular, Inc.Inventors: Mihir Tendulkar, Imran Hashim, Yun Wang
-
Publication number: 20130200323Abstract: A nonvolatile memory element is disclosed comprising a first electrode, a near-stoichiometric metal oxide memory layer having bistable resistance, and a second electrode in contact with the near-stoichiometric metal oxide memory layer. At least one electrode is a resistive electrode comprising a sub-stoichiometric transition metal nitride or oxynitride, and has a resistivity between 0.1 and 10 ? cm. The resistive electrode provides the functionality of an embedded current-limiting resistor and also serves as a source and sink of oxygen vacancies for setting and resetting the resistance state of the metal oxide layer. Novel fabrication methods for the second electrode are also disclosed.Type: ApplicationFiled: February 7, 2012Publication date: August 8, 2013Applicant: Intermolecular, Inc.Inventors: Hieu Pham, Vidyut Gopal, Imran Hashim, Dipankar Pramanik, Yun Wang, Hong Sheng Yang
-
Publication number: 20130200324Abstract: Embodiments of the invention include nonvolatile memory elements and memory devices comprising the nonvolatile memory elements. Methods for forming the nonvolatile memory elements are also disclosed. The nonvolatile memory element comprises a first electrode layer, a second electrode layer, and a plurality of layers of an oxide disposed between the first and second electrode layers. One of the oxide layers has linear resistance and substoichiometric composition, and the other oxide layer has bistable resistance and near-stoichiometric composition. Preferably, the sum of the two oxide layer thicknesses is between about 20 ? and about 100 ?, and the oxide layer with bistable resistance has a thickness between about 25% and about 75% of the total thickness. In one embodiment, the oxide layers are formed using reactive sputtering in an atmosphere with controlled flows of argon and oxygen.Type: ApplicationFiled: February 7, 2012Publication date: August 8, 2013Applicant: Intermolecular, Inc.Inventors: Hieu Pham, Vidyut Gopal, Imran Hashim, Yun Wang, Hong Sheng Yang
-
Patent number: 8501505Abstract: In embodiments of the current invention, methods of combinatorial processing and a test chip for use in these methods are described. These methods and test chips enable the efficient development of materials, processes, and process sequence integration schemes for semiconductor manufacturing processes. In general, the methods simplify the processing sequence of forming devices or partially formed devices on a test chip such that the devices can be tested immediately after formation. The immediate testing allows for the high throughput testing of varied materials, processes, or process sequences on the test chip. The test chip has multiple site isolated regions where each of the regions is varied from one another and the test chip is designed to enable high throughput testing of the different regions.Type: GrantFiled: December 31, 2012Date of Patent: August 6, 2013Assignee: Intermolecular, Inc.Inventors: Guarav Verma, Tony P. Chiang, Imran Hashim, Sandra G. Malhotra, Prashant B. Phatak, Kurt H. Weiner
-
Publication number: 20130187110Abstract: Embodiments of the invention generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has improved device switching performance and lifetime, due to the addition of a current limiting component disposed therein. The electrical properties of the current limiting component are configured to lower the current flow through the variable resistance layer during the logic state programming steps by adding a fixed series resistance in the resistive switching memory element of the nonvolatile memory device. In one embodiment, the current limiting component comprises a tunnel oxide that is a current limiting material disposed within a resistive switching memory element in a nonvolatile resistive switching memory device.Type: ApplicationFiled: January 19, 2012Publication date: July 25, 2013Applicant: Intermolecular, Inc.Inventors: Mihir Tendulkar, Imran Hashim, Yun Wang
-
Publication number: 20130153845Abstract: A nonvolatile resistive memory element has a novel variable resistance layer that includes a metal nitride, a metal oxide-nitride, a two-metal oxide-nitride, or a multilayer stack thereof. One method of forming the novel variable resistance layer comprises an interlayer deposition procedure, in which metal oxide layers are interspersed with metal nitride layers and then converted into a substantially homogeneous layer by an anneal process. Another method of forming the novel variable resistance layer comprises an intralayer deposition procedure, in which various ALD processes are sequentially interleaved to form a metal oxide-nitride layer. Alternatively, a metal oxide is deposited, nitridized, and annealed to form the variable resistance layer or a metal nitride is deposited, oxidized, and annealed to form the variable resistance layer.Type: ApplicationFiled: December 16, 2011Publication date: June 20, 2013Applicant: Intermolecular, Inc.Inventors: Yun Wang, Tony P. Chiang, Imran Hashim
-
Patent number: 8466446Abstract: Embodiments of the invention generally relate to nonvolatile memory devices, such as a ReRAM cells, and methods for manufacturing such memory devices, which includes optimized, atomic layer deposition (ALD) processes for forming metal oxide film stacks. The metal oxide film stacks contain a metal oxide coupling layer disposed on a metal oxide host layer, each layer having different grain structures/sizes. The interface disposed between the metal oxide layers facilitates oxygen vacancy movement. In many examples, the interface is a misaligned grain interface containing numerous grain boundaries extending parallel to the electrode interfaces, in contrast to the grains in the bulk film extending perpendicular to the electrode interfaces. As a result, oxygen vacancies are trapped and released during switching without significant loss of vacancies.Type: GrantFiled: September 12, 2012Date of Patent: June 18, 2013Assignee: Intermolecular, Inc.Inventors: Yun Wang, Vidyut Gopal, Imran Hashim, Dipankar Pramanik, Tony Chiag