Patents by Inventor Imran Hashim

Imran Hashim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120149137
    Abstract: In embodiments of the current invention, methods of combinatorial processing and a test chip for use in these methods are described. These methods and test chips enable the efficient development of materials, processes, and process sequence integration schemes for semiconductor manufacturing processes. In general, the methods simplify the processing sequence of forming devices or partially formed devices on a test chip such that the devices can be tested immediately after formation. The immediate testing allows for the high throughput testing of varied materials, processes, or process sequences on the test chip. The test chip has multiple site isolated regions where each of the regions is varied from one another and the test chip is designed to enable high throughput testing of the different regions.
    Type: Application
    Filed: February 17, 2012
    Publication date: June 14, 2012
    Applicant: Intermolecular, Inc
    Inventors: Gaurav Verma, Kurt Weiner, Prashant Phatak, Imran Hashim, Sandra Malhotra, Tony Chiang
  • Patent number: 8143619
    Abstract: In embodiments of the current invention, methods of combinatorial processing and a test chip for use in these methods are described. These methods and test chips enable the efficient development of materials, processes, and process sequence integration schemes for semiconductor manufacturing processes. In general, the methods simplify the processing sequence of forming devices or partially formed devices on a test chip such that the devices can be tested immediately after formation. The immediate testing allows for the high throughput testing of varied materials, processes, or process sequences on the test chip. The test chip has multiple site isolated regions where each of the regions is varied from one another and the test chip is designed to enable high throughput testing of the different regions.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: March 27, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Gaurav Verma, Kurt Weiner, Prashant Phatak, Imran Hashim, Sandra Malhotra, Tony Chiang
  • Publication number: 20120061799
    Abstract: This disclosure provides (a) methods of making an oxide layer (e.g., a dielectric layer) based on yttrium and titanium, to have a high dielectric constant and low leakage characteristic and (b) related devices and structures. An oxide layer having both yttrium and titanium may be fabricated either as an amorphous oxide or as an alternating series of monolayers. In several embodiments, the oxide is characterized by a yttrium contribution to total metal that is specifically controlled. The oxide layer can be produced as the result of a reactive process, if desired, via either a PVD process or, alternatively, via an atomic layer deposition process that employs specific precursor materials to allow for a common process temperature window for both titanium and yttrium reactions.
    Type: Application
    Filed: October 8, 2010
    Publication date: March 15, 2012
    Inventors: Imran Hashim, Indranil De, Tony Chiang, Edward Haywood, Hanhong Chen, Nobi Fuchigami, Pragati Kumar, Sandra Malhotra, Sunil Shanker
  • Publication number: 20110248264
    Abstract: In embodiments of the current invention, methods of combinatorial processing and a test chip for use in these methods are described. These methods and test chips enable the efficient development of materials, processes, and process sequence integration schemes for semiconductor manufacturing processes. In general, the methods simplify the processing sequence of forming devices or partially formed devices on a test chip such that the devices can be tested immediately after formation. The immediate testing allows for the high throughput testing of varied materials, processes, or process sequences on the test chip. The test chip has multiple site isolated regions where each of the regions is varied from one another and the test chip is designed to enable high throughput testing of the different regions.
    Type: Application
    Filed: October 15, 2010
    Publication date: October 13, 2011
    Inventors: Gaurav Verma, Kurt Weiner, Prashant Phatak, Imran Hashim, Sandra Malhotra, Tony Chiang
  • Publication number: 20110203085
    Abstract: This disclosure provides (a) methods of making an oxide layer (e.g., a dielectric layer) based on titanium oxide, to suppress the formation of anatase-phase titanium oxide and (b) related devices and structures. A metal-insulator-metal (“MIM”) stack is formed using an ozone pretreatment process of a bottom electrode (or other substrate) followed by an ALD process to form a TiO2 dielectric, rooted in the use of an amide-containing precursor. Following the ALD process, an oxidizing anneal process is applied in a manner is hot enough to heal defects in the TiO2 dielectric and reduce interface states between TiO2 and electrode; the anneal temperature is selected so as to not be so hot as to disrupt BEL surface roughness. Further process variants may include doping the titanium oxide, pedestal heating during the ALD process to 275-300 degrees Celsius, use of platinum or ruthenium for the BEL, and plural reagent pulses of ozone for each ALD process cycle.
    Type: Application
    Filed: May 4, 2011
    Publication date: August 25, 2011
    Applicant: INTERMOLECULAR, INC.
    Inventors: Hanhong Chen, Pragati Kumar, Sunil Shanker, Edward Haywood, Sandra Malhotra, Imran Hashim, Nobi Fuchigami, Prashant Phatak, Monica Mathur
  • Patent number: 7968452
    Abstract: This disclosure provides (a) methods of making an oxide layer (e.g., a dielectric layer) based on titanium oxide, to suppress the formation of anatase-phase titanium oxide and (b) related devices and structures. A metal-insulator-metal (“MIM”) stack is formed using an ozone pretreatment process of a bottom electrode (or other substrate) followed by an ALD process to form a TiO2 dielectric, rooted in the use of an amide-containing precursor. Following the ALD process, an oxidizing anneal process is applied in a manner is hot enough to heal defects in the TiO2 dielectric and reduce interface states between TiO2 and electrode; the anneal temperature is selected so as to not be so hot as to disrupt BEL surface roughness. Further process variants may include doping the titanium oxide, pedestal heating during the ALD process to 275-300 degrees Celsius, use of platinum or ruthenium for the BEL, and plural reagent pulses of ozone for each ALD process cycle.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: June 28, 2011
    Assignee: Intermolecular, Inc.
    Inventors: Hanhong Chen, Pragati Kumar, Sunil Shanker, Edward Haywood, Sandra Malhotra, Imran Hashim, Nobi Fuchigami, Prashant Phatak, Monica Mathur
  • Publication number: 20110151136
    Abstract: Methods for depositing high-K dielectrics are described, including depositing a first electrode on a substrate, wherein the first electrode is chosen from the group consisting of platinum and ruthenium, applying an oxygen plasma treatment to the exposed metal to reduce the contact angle of a surface of the metal, and depositing a titanium oxide layer on the exposed metal using at least one of a chemical vapor deposition process and an atomic layer deposition process, wherein the titanium oxide layer comprises at least a portion rutile titanium oxide.
    Type: Application
    Filed: March 3, 2011
    Publication date: June 23, 2011
    Inventors: Xiangxin Rui, Sunil Shanker, Sandra Malhotra, Imran Hashim, Edward Haywood
  • Patent number: 7927947
    Abstract: Methods for depositing high-K dielectrics are described, including depositing a first electrode on a substrate, wherein the first electrode is chosen from the group consisting of platinum and ruthenium, applying an oxygen plasma treatment to the exposed metal to reduce the contact angle of a surface of the metal, and depositing a titanium oxide layer on the exposed metal using at least one of a chemical vapor deposition process and an atomic layer deposition process, wherein the titanium oxide layer comprises at least a portion rutile titanium oxide.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: April 19, 2011
    Assignee: Intermolecular, Inc.
    Inventors: Xiangxin Rui, Sunil Shanker, Sandra Malhotra, Imran Hashim, Edward Haywood
  • Publication number: 20110027960
    Abstract: Embodiments of the current invention include methods of forming a strontium titanate (SrTiO3) film using atomic layer deposition (ALD). More particularly, the method includes forming a plurality of titanium oxide (TiO2) unit films using ALD and forming a plurality of strontium oxide (SrO) unit films using ALD. The combined thickness of the TiO2 and SrO unit films is less than approximately 5 angstroms. The TiO2 and SrO units films are then annealed to form a strontium titanate layer.
    Type: Application
    Filed: June 3, 2010
    Publication date: February 3, 2011
    Inventors: Laura M. Matz, Xiangxin Rui, Xinjian Lei, Sunil Shanker, Moo-Sung Kim, Nobi Fuchigami, Iain Buchanan, Anh Duong, Sandra Malhotra, Imran Hashim
  • Publication number: 20110027617
    Abstract: Embodiments of the current invention include methods of forming a strontium titanate (SrTiO3) film using atomic layer deposition (ALD). More particularly, the method includes forming a plurality of titanium oxide (TiO2) unit films using ALD and forming a plurality of strontium oxide (SrO) unit films using ALD. The combined thickness of the TiO2 and SrO unit films is less than approximately 5 angstroms. The TiO2 and SrO units films are then annealed to form a strontium titanate layer.
    Type: Application
    Filed: June 3, 2010
    Publication date: February 3, 2011
    Inventors: Laura M. Matz, Xiangxin Rui, Xinjian Lei, Sunil Shanker, Moo-Sung Kim, Nobi Fuchigami, Iain Buchanan, Duong Anh, Sandra Malhotra, Imran Hashim
  • Publication number: 20110014359
    Abstract: This disclosure provides (a) methods of making an oxide layer (e.g., a dielectric layer) based on yttrium and titanium to have a high dielectric constant and low leakage characteristic and (b) related devices and structures. An oxide layer having both yttrium and titanium may be fabricated either as an amorphous oxide or as an alternating series of monolayers. In several embodiments, the oxide is characterized by a yttrium contribution to total metal that is specifically controlled. The oxide layer can be produced as the result of a reactive process, if desired, via either a PVD process or, alternatively, via an atomic layer deposition process that employs specific precursor materials to allow for a common process temperature window for both titanium and yttrium reactions.
    Type: Application
    Filed: April 17, 2009
    Publication date: January 20, 2011
    Inventors: Imran Hashim, Indranil De, Tony Chiang, Edward Haywood, Hanhong Chen, Nobi Fuchigami, Pragati Kumar, Sandra Malhotra, Sunil Shanker
  • Publication number: 20100330269
    Abstract: This disclosure provides (a) methods of making an oxide layer (e.g., a dielectric layer) based on titanium oxide, to suppress the formation of anatase-phase titanium oxide and (b) related devices and structures. A metal-insulator-metal (“MIM”) stack is formed using an ozone pretreatment process of a bottom electrode (or other substrate) followed by an ALD process to form a TiO2 dielectric, rooted in the use of an amide-containing precursor. Following the ALD process, an oxidizing anneal process is applied in a manner is hot enough to heal defects in the TiO2 dielectric and reduce interface states between TiO2 and electrode; the anneal temperature is selected so as to not be so hot as to disrupt BEL surface roughness. Further process variants may include doping the titanium oxide, pedestal heating during the ALD process to 275-300 degrees Celsius, use of platinum or ruthenium for the BEL, and plural reagent pulses of ozone for each ALD process cycle.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Inventors: Hanhong Chen, Pragati Kumar, Sunil Shanker, Edward Haywood, Sandra Malhotra, Imran Hashim, Nobi Fuchigami, Prashant Phatak, Monica Mathur
  • Publication number: 20100330772
    Abstract: Methods for depositing high-K dielectrics are described, including depositing a first electrode on a substrate, wherein the first electrode is chosen from the group consisting of platinum and ruthenium, applying an oxygen plasma treatment to the exposed metal to reduce the contact angle of a surface of the metal, and depositing a titanium oxide layer on the exposed metal using at least one of a chemical vapor deposition process and an atomic layer deposition process, wherein the titanium oxide layer comprises at least a portion rutile titanium oxide.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Inventors: Xiangxin Rui, Sunil Shanker, Sandra Malhotra, Imran Hashim, Edward Haywood
  • Patent number: 7824935
    Abstract: In embodiments of the current invention, methods of combinatorial processing and a test chip for use in these methods are described. These methods and test chips enable the efficient development of materials, processes, and process sequence integration schemes for semiconductor manufacturing processes. In general, the methods simplify the processing sequence of forming devices or partially formed devices on a test chip such that the devices can be tested immediately after formation. The immediate testing allows for the high throughput testing of varied materials, processes, or process sequences on the test chip. The test chip has multiple site isolated regions where each of the regions is varied from one another and the test chip is designed to enable high throughput testing of the different regions.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: November 2, 2010
    Assignee: Intermolecular, Inc.
    Inventors: Gaurav Verma, Kurt Weiner, Prashant Phatak, Imran Hashim, Sandra Malhotra, Tony Chiang
  • Publication number: 20100258782
    Abstract: Resistive-switching memory elements having improved switching characteristics are described, including a memory element having a first electrode and a second electrode, a switching layer between the first electrode and the second electrode comprising hafnium oxide and having a first thickness, and a coupling layer between the switching layer and the second electrode, the coupling layer comprising a material including metal titanium and having a second thickness that is less than 25 percent of the first thickness.
    Type: Application
    Filed: February 12, 2010
    Publication date: October 14, 2010
    Inventors: Ronald John Kuse, Imran Hashim, Tony Chiang
  • Publication number: 20100048419
    Abstract: A combinatorial screening method and system are provided. The combinatorial system and method provide rapid data generation for characterization of phase change material. The characterization data is collected through a multipoint probe card where multiple regions are characterized in a single annealing cycle.
    Type: Application
    Filed: July 16, 2009
    Publication date: February 25, 2010
    Inventors: Imran Hashim, Sandra Malhotra, Ryan Clarke, Sunil Shanker, Yun Wang, Yoram Schwarz
  • Publication number: 20100001269
    Abstract: In embodiments of the current invention, methods of combinatorial processing and a test chip for use in these methods are described. These methods and test chips enable the efficient development of materials, processes, and process sequence integration schemes for semiconductor manufacturing processes. In general, the methods simplify the processing sequence of forming devices or partially formed devices on a test chip such that the devices can be tested immediately after formation. The immediate testing allows for the high throughput testing of varied materials, processes, or process sequences on the test chip. The test chip has multiple site isolated regions where each of the regions is varied from one another and the test chip is designed to enable high throughput testing of the different regions.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 7, 2010
    Inventors: Gaurav Verma, Kurt Weiner, Prashant Phatak, Imran Hashim, Sandra Malhotra, Tony Chiang
  • Patent number: 7294242
    Abstract: An apparatus and method for sputter depositing a magnetic film on a substrate to produce a magnetic device such as magnetic recording heads for reading digital information from a storage medium. The apparatus of the invention includes a sputtering chamber containing a target and a substrate, and a magnet array disposed within the chamber to form a substantially parallel magnetic field at a surface of the substrate. The sputtering chamber reduces interference between the magnetron and the magnet array by providing a long throw distance and/or a grounded collimator. The magnet array is preferably a circular ring.
    Type: Grant
    Filed: August 24, 1998
    Date of Patent: November 13, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Imran Hashim, Seh-Kwang Lee, Thomas Brezoczky, Sesh Ramaswami
  • Patent number: 6992012
    Abstract: Methods of forming copper interconnects free from via-to-via leakage currents and having low resistances are disclosed. In a first aspect, a barrier layer is deposited on the first metal layer prior to copper oxide sputter-etching to prevent copper atoms from reaching the interlayer dielectric and forming via-to-via leakage current paths therein. In a second aspect, a capping dielectric barrier layer is deposited over the first metal layer prior to sputter etching. During sputter-etching, the capping dielectric barrier layer redistributes on the sidewalls of the interlayer dielectric, preventing sputter-etched copper atoms from reaching the interlayer dielectric and forming via-to-via leakage paths therein. In a third aspect, both a capping dielectric barrier layer and a barrier layer are deposited over the first metal layer prior to sputter-etching to prevent copper atoms produced during sputter-etching from reaching the interlayer dielectric and forming via-to-via leakage paths therein.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: January 31, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Imran Hashim, Tony Chiang, Barry Chin
  • Patent number: 6881673
    Abstract: A method and apparatus for metallization process sequences are provided for forming reliable interconnects including lines, vias and contacts. An initial barrier layer, such as Ta or TaN, is first formed on a patterned substrate followed by seed layer formed using high density plasma PVD techniques. The structure is then filled using either 1) electroplating, 2) PVD reflow, 3) CVD followed by PVD reflow, or 4) CVD.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: April 19, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Peijun Ding, Imran Hashim, Barry Chin, Bingxi Sun