Patents by Inventor Indra V. Chary

Indra V. Chary has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250126791
    Abstract: A method of forming a microelectronic device comprises forming a microelectronic device structure. The microelectronic device structure comprises a stack structure comprising insulative structures and additional insulative structures vertically alternating with the insulative structures, a dielectric structure vertically extending partially through the stack structure, and a dielectric material vertically overlying and horizontally extending across the stack structure and the dielectric structure. Portions of at least the dielectric material and the dielectric structure are removed to form a trench vertically overlying and at least partially horizontally overlapping a remaining portion of the dielectric structure. The trench is substantially filled with additional dielectric material. Microelectronic devices, memory devices, and electronic systems are also described.
    Type: Application
    Filed: December 18, 2024
    Publication date: April 17, 2025
    Inventors: Shuangqiang Luo, Indra V. Chary, Justin B. Dorhout
  • Publication number: 20250107204
    Abstract: Microelectronic devices include a tiered stack having vertically alternating insulative and conductive structures. A first series of stadiums is defined in the tiered stack within a first block of a dual-block structure. A second series of stadiums is defined in the tiered stack within a second block of the dual-block structure. The first and second series of stadiums are substantially symmetrically structured about a trench at a center of the dual-block structure. The trench extends a width of the first and second series of stadiums. The stadiums of the first and second series of stadiums have opposing staircase structures comprising steps at ends of the conductive structures of the tiered stack. Conductive source/drain contact structures are in the stack and extend substantially vertically from a source/drain region at a floor of the trench. Additional microelectronic devices are also disclosed, as are methods of fabrication and electronic systems.
    Type: Application
    Filed: December 9, 2024
    Publication date: March 27, 2025
    Inventors: Lifang Xu, Richard J. Hill, Indra V. Chary, Lars P. Heineck
  • Publication number: 20250096042
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. Horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. The memory-block regions comprise part of a memory-plane region. A pair of elevationally-extending walls are formed that are laterally-spaced relative one another and that are individually horizontally-longitudinally-elongated. The pair of walls are one of (a) or (b), where: (a): in the memory-plane region laterally-between immediately-laterally-adjacent of the memory-block regions; and (b): in a region that is edge-of-plane relative to the memory-plane region. Through the horizontally-elongated trenches and after forming the pair of walls, sacrificial material that is in the first tiers is isotropically etching away and replaced with conducting material of individual conducting lines.
    Type: Application
    Filed: December 5, 2024
    Publication date: March 20, 2025
    Applicant: Micron Technology, Inc.
    Inventors: Anilkumar Chandolu, Indra V. Chary
  • Patent number: 12250812
    Abstract: Some embodiments include an integrated assembly having a source structure, and having a stack of alternating conductive levels and insulative levels over the source structure. Cell-material-pillars pass through the stack. The cell-material-pillars are arranged within a configuration which includes a first memory-block-region and a second memory-block-region. The cell-material-pillars include channel material which is electrically coupled with the source structure. Memory cells are along the conductive levels and include regions of the cell-material-pillars. A panel is between the first and second memory-block-regions. The panel has a first material configured as a container shape. The container shape defines opposing sides and a bottom of a cavity. The panel has a second material within the cavity. The second material is compositionally different from the first material. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: January 9, 2023
    Date of Patent: March 11, 2025
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Nancy M. Lomeli, John D. Hopkins, Jiewei Chen, Indra V. Chary, Jun Fang, Vladimir Samara, Kaiming Luo, Rita J. Klein, Xiao Li, Vinayak Shamanna
  • Publication number: 20250071996
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a first deck located over a substrate, and a second deck located over the first deck, and pillars extending through the first and second decks. The first deck includes first memory cells, first control gates associated with the first memory cells, and first conductive paths coupled to the first control gates. The second conductive paths include second conductive pads located on a first level of the apparatus over the substrate. The second deck includes second memory cells, second control gates associated with the second memory cells, and second conductive paths coupled to the second control gates. The second conductive paths include second conductive pads located on a second level of the apparatus. The first and second conductive pads having lengths in a direction perpendicular to a direction from the first deck to the second deck.
    Type: Application
    Filed: November 12, 2024
    Publication date: February 27, 2025
    Inventors: Darwin A. Clampitt, Shawn D. Lyonsmith, Matthew J. King, Lisa M. Clampitt, John Hopkins, Kevin Y. Titus, Indra V. Chary, Martin Jared Barclay, Anilkumar Chandolu, Pavithra Natarajan, Roger W. Lindsay
  • Publication number: 20250056800
    Abstract: A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Operative channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. Upper masses comprise first material laterally-between and longitudinally-spaced-along immediately-laterally-adjacent of the memory blocks and second material laterally-between and longitudinally-spaced-along the immediately-laterally-adjacent memory blocks longitudinally-between and under the upper masses. The second material is of different composition from that of the first material. The second material comprises insulative material. Other embodiments, including method, are disclosed.
    Type: Application
    Filed: September 9, 2024
    Publication date: February 13, 2025
    Inventors: Jordan D. Greenlee, Daniel Billingsley, Indra V. Chary, Rita J. Klein
  • Patent number: 12224240
    Abstract: A microelectronic device, including a stack structure including alternating conductive structures and dielectric structures is disclosed. Memory pillars extend through the stack structure. Contacts are laterally adjacent to the memory pillars and extending through the stack structure. The contacts including active contacts and support contacts. The active contacts including a liner and a conductive material. The support contacts including the liner and a dielectric material. The conductive material of the active contacts is in electrical communication with the memory pillars. Methods and electronic systems are also disclosed.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: February 11, 2025
    Assignee: Micron Technology, Inc.
    Inventors: S M Istiaque Hossain, Indra V. Chary, Anilkumar Chandolu, Sidhartha Gupta, Shuangqiang Luo
  • Patent number: 12211746
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. Horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. The memory-block regions comprise part of a memory-plane region. A pair of elevationally-extending walls are formed that are laterally-spaced relative one another and that are individually horizontally-longitudinally-elongated. The pair of walls are one of (a) or (b), where: (a): in the memory-plane region laterally-between immediately-laterally-adjacent of the memory-block regions; and (b): in a region that is edge-of-plane relative to the memory-plane region. Through the horizontally-elongated trenches and after forming the pair of walls, sacrificial material that is in the first tiers is isotropically etching away and replaced with conducting material of individual conducting lines.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: January 28, 2025
    Assignee: Micron Technology, Inc.
    Inventors: Anilkumar Chandolu, Indra V. Chary
  • Patent number: 12213317
    Abstract: A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Operative channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. The operative channel-material strings in the laterally-spaced memory blocks comprise part of a memory plane. An elevationally-extending wall is in the memory plane laterally-between immediately-laterally-adjacent of the memory blocks and that completely encircles an island that is laterally-between immediately-laterally-adjacent of the memory blocks in the memory plane. Other embodiments, including method are disclosed.
    Type: Grant
    Filed: November 14, 2023
    Date of Patent: January 28, 2025
    Assignee: Micron Technology, Inc.
    Inventors: Lifang Xu, Indra V. Chary, Justin B. Dorhout, Jian Li, Haitao Liu, Paolo Tessariol
  • Publication number: 20250024673
    Abstract: A microelectronic device comprising a stack structure comprising a non-staircase region, a staircase region, and an array region. Each of the non-staircase region, the staircase region, and the array region comprises tiers of alternating conductive materials and dielectric materials. One or more pillars are in the non-staircase region and in the array region, and one or more supports are in the staircase region. A conductive material is in each of the non-staircase region, the staircase region, and the array region and extends vertically into a source adjacent to the tiers. The source comprises corrosion containment features in each of the non-staircase region, the staircase region, and the array region, adjacent to the conductive material in the source. Additional microelectronic devices, electronic systems, and methods are also disclosed.
    Type: Application
    Filed: September 25, 2024
    Publication date: January 16, 2025
    Inventors: Shuangqiang Luo, Indra V. Chary
  • Publication number: 20250017007
    Abstract: A method of forming a microelectronic device includes forming a microelectronic device structure. The microelectronic device structure includes a stack structure comprising insulative structures and electrically conductive structures vertically alternating with the insulative structures, pillar structures extending vertically through the stack structure, an etch stop material vertically overlaying the stack structure, and a first dielectric material vertically overlying the etch stop material. The method further includes removing portions of the first dielectric material, the etch stop material, and an upper region of the stack structure to form a trench interposed between horizontally neighboring groups of the pillar structures, forming a liner material within the trench, and substantially filling a remaining portion of the trench with a second dielectric material to form a dielectric barrier structure.
    Type: Application
    Filed: July 6, 2023
    Publication date: January 9, 2025
    Inventors: Shuangqiang Luo, Indra V. Chary, Nancy M. Lomeli, Xiao Li
  • Patent number: 12185546
    Abstract: A method of forming a microelectronic device comprises forming a microelectronic device structure. The microelectronic device structure comprises a stack structure comprising insulative structures and additional insulative structures vertically alternating with the insulative structures, a dielectric structure vertically extending partially through the stack structure, and a dielectric material vertically overlying and horizontally extending across the stack structure and the dielectric structure. Portions of at least the dielectric material and the dielectric structure are removed to form a trench vertically overlying and at least partially horizontally overlapping a remaining portion of the dielectric structure. The trench is substantially filled with additional dielectric material. Microelectronic devices, memory devices, and electronic systems are also described.
    Type: Grant
    Filed: June 28, 2023
    Date of Patent: December 31, 2024
    Assignee: Loestar Licensing Group LLC
    Inventors: Shuangqiang Luo, Indra V. Chary, Justin B. Dorhout
  • Patent number: 12166094
    Abstract: Microelectronic devices include a tiered stack having vertically alternating insulative and conductive structures. A first series of stadiums is defined in the tiered stack within a first block of a dual-block structure. A second series of stadiums is defined in the tiered stack within a second block of the dual-block structure. The first and second series of stadiums are substantially symmetrically structured about a trench at a center of the dual-block structure. The trench extends a width of the first and second series of stadiums. The stadiums of the first and second series of stadiums have opposing staircase structures comprising steps at ends of the conductive structures of the tiered stack. Conductive source/drain contact structures are in the stack and extend substantially vertically from a source/drain region at a floor of the trench. Additional microelectronic devices are also disclosed, as are methods of fabrication and electronic systems.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: December 10, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Lifang Xu, Richard J. Hill, Indra V. Chary, Lars P. Heineck
  • Patent number: 12167599
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a first deck located over a substrate, and a second deck located over the first deck, and pillars extending through the first and second decks. The first deck includes first memory cells, first control gates associated with the first memory cells, and first conductive paths coupled to the first control gates. The second conductive paths include second conductive pads located on a first level of the apparatus over the substrate. The second deck includes second memory cells, second control gates associated with the second memory cells, and second conductive paths coupled to the second control gates. The second conductive paths include second conductive pads located on a second level of the apparatus. The first and second conductive pads having lengths in a direction perpendicular to a direction from the first deck to the second deck.
    Type: Grant
    Filed: December 19, 2022
    Date of Patent: December 10, 2024
    Inventors: Darwin A. Clampitt, Shawn D. Lyonsmith, Matthew J. King, Lisa M. Clampitt, John Hopkins, Kevin Y. Titus, Indra V. Chary, Martin Jared Barclay, Anilkumar Chandolu, Pavithra Natarajan, Roger W. Lindsay
  • Publication number: 20240355363
    Abstract: Methods, systems, and devices for a bit line contact scheme in a memory system stack are described. A memory architecture may include bit lines coupled with bit line contacts, and pillars coupled with circuitry associated with supporting operation of the bit lines. Hybrid plugs may be integrated into the pillars to couple the bit line contacts with the pillars, forming a conductive path between the bit lines and the circuitry. The hybrid plugs may be recessed within the pillars such that the hybrid plugs do not extend through the memory architecture beyond the pillars. The hybrid plugs may include one or more relatively low capacitance, conductive materials, such as a titanium alloy material (e.g., titanium, titanium nitride), a tungsten alloy material (e.g., tungsten, tungsten nitride), or any combination thereof, among other materials.
    Type: Application
    Filed: April 9, 2024
    Publication date: October 24, 2024
    Inventors: Mithun Kumar Ramasahayam, Indra V. Chary, Meng-Wei Kuo
  • Patent number: 12127400
    Abstract: A microelectronic device comprising a stack structure comprising a non-staircase region, a staircase region, and an array region. Each of the non-staircase region, the staircase region, and the array region comprises tiers of alternating conductive materials and dielectric materials. One or more pillars are in the non-staircase region and in the array region, and one or more supports are in the staircase region. A conductive material is in each of the non-staircase region, the staircase region, and the array region and extends vertically into a source adjacent to the tiers. The source comprises corrosion containment features in each of the non-staircase region, the staircase region, and the array region, adjacent to the conductive material in the source. Additional microelectronic devices, electronic systems, and methods are also disclosed.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: October 22, 2024
    Inventors: Shuangqiang Luo, Indra V. Chary
  • Publication number: 20240347464
    Abstract: A microelectronic device comprises a stack structure comprising insulative structures vertically interleaved with conductive structures, first support pillar structures vertically extending through the stack structure in a first staircase region including steps defined at edges of tiers of the insulative structures and conductive structures, and second support pillar structures vertically extending through the stack structure in a second staircase region including additional steps defined at edges of additional tiers of the insulative structures and conductive structures, the second support pillar structures having a smaller cross-sectional area than the first support pillar structures. Related memory devices, electronic systems, and methods are also described.
    Type: Application
    Filed: June 24, 2024
    Publication date: October 17, 2024
    Inventors: Lingyu Kong, Lifang Xu, Indra V. Chary, Shuangqiang Luo, Sok Han Wong
  • Publication number: 20240341095
    Abstract: Memory circuitry comprising strings of memory cells comprises vertically-alternating insulative tiers and conductive tiers that extend from a memory-array region into a stair-step region across an intermediate region that is between the memory-array region and the stair-step region. The insulative tiers and the conductive tiers comprise memory blocks upper portions of which individually comprise sub-blocks. Sub-block trenches are in the upper portions individually between immediately-laterally-adjacent of the sub-blocks. Strings of memory cells in the memory-array region comprise channel-material strings that extend through the insulative tiers and the conductive tiers in the memory blocks and in the sub-blocks. The sub-block trenches in the memory-array region, in the intermediate region, and in the stair-step region individually have a top.
    Type: Application
    Filed: March 12, 2024
    Publication date: October 10, 2024
    Applicant: Micron Technology, Inc.
    Inventors: Shuangqiang Luo, Indra V. Chary, Kar Wui Thong
  • Publication number: 20240334703
    Abstract: Microelectronic devices include a stack structure with a vertically alternating sequence of insulative structures and conductive structures arranged in tiers. Conductive contact structures extend through the stack structure. An insulative material is between the conductive contact structures and the tiers of the stack structure. In a lower tier portion of the stack structure, a conductive structure, of the conductive structures, has a portion extending a first width between a pair of the conductive contact structures. In a portion of the stack structure above the lower tier portion, an additional conductive structure, of the conductive structures, has an additional portion extending a second width between the pair of the conductive contact structures. The second width is greater than the first width. Related methods and electronic systems are also disclosed.
    Type: Application
    Filed: June 10, 2024
    Publication date: October 3, 2024
    Inventors: Anilkumar Chandolu, Indra V. Chary
  • Patent number: 12096633
    Abstract: A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Operative channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. Upper masses comprise first material laterally-between and longitudinally-spaced-along immediately-laterally-adjacent of the memory blocks and second material laterally-between and longitudinally-spaced-along the immediately-laterally-adjacent memory blocks longitudinally-between and under the upper masses. The second material is of different composition from that of the first material. The second material comprises insulative material. Other embodiments, including method, are disclosed.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: September 17, 2024
    Inventors: Jordan D. Greenlee, Daniel Billingsley, Indra V. Chary, Rita J. Klein