Patents by Inventor Indra V. Chary

Indra V. Chary has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11195848
    Abstract: A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Operative channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. Upper masses comprise first material laterally-between and longitudinally-spaced-along immediately-laterally-adjacent of the memory blocks and second material laterally-between and longitudinally-spaced-along the immediately-laterally-adjacent memory blocks longitudinally-between and under the upper masses. The second material is of different composition from that of the first material. The second material comprises insulative material. Other embodiments, including method, are disclosed.
    Type: Grant
    Filed: August 25, 2019
    Date of Patent: December 7, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Daniel Billingsley, Indra V. Chary, Rita J. Klein
  • Publication number: 20210375907
    Abstract: Some embodiments include an integrated assembly having a first deck, a second deck over the first deck, and a third deck over the second deck. The first deck has first conductive levels disposed one atop another. The second deck has second conductive levels disposed one atop another. The third deck has third conductive levels disposed one atop another. A first staircase region extends to the first and second conductive levels, and passes through the third conductive levels. A second staircase region extends to the third conductive levels and not to the first and second conductive levels. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 2, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Shuangqiang Luo, Indra V. Chary
  • Publication number: 20210375894
    Abstract: Some embodiments include an integrated assembly having a conductive expanse over conductive nodes. The conductive nodes include a first composition. A bottom surface of the conductive expanse includes a second composition which is different composition than the first composition. A stack is over the conductive expanse. The stack includes alternating first and second levels. Pillar structures extend vertically through the stack. Each of the pillar structures includes a post of conductive material laterally surrounded by an insulative liner. At least one of the posts extends through the conductive expanse to directly contact one of the conductive nodes. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: August 6, 2021
    Publication date: December 2, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Shuangqiang Luo, Indra V. Chary, Justin B. Dorhout, Rita J. Klein
  • Patent number: 11177279
    Abstract: In an example, a method of forming a stacked memory array includes forming a stack of alternating first and second dielectrics, forming a termination structure through the stack, the termination structure comprising a dielectric liner around a conductor, forming a set of contacts concurrently with forming the termination structure, forming a third dielectric over an upper surface of the stack and an upper surface of the termination structure, forming a first opening through the third dielectric and the stack between first and second groups of semiconductor structures so that the first opening exposes an upper surface of the conductor, and removing the conductor from the termination structure to form a second opening lined with the dielectric liner. In some examples, the dielectric liner can include a rectangular or a triangular tab or a pair of prongs that can have a rectangular profile or that can be tapered.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: November 16, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Matthew J. King, Anilkumar Chandolu, Indra V. Chary, Darwin A. Clampitt, Gordon Haller, Thomas George, Brett D. Lowe, David A. Daycock
  • Patent number: 11177271
    Abstract: A device comprises an array of elevationally-extending transistors and a circuit structure adjacent and electrically coupled to the elevationally-extending transistors of the array. The circuit structure comprises a stair step structure comprising vertically-alternating tiers comprising conductive steps that are at least partially elevationally separated from one another by insulative material. Operative conductive vias individually extend elevationally through one of the conductive steps at least to a bottom of the vertically-alternating tiers and individually electrically couple to an electronic component below the vertically-alternating tiers. Dummy structures individually extend elevationally through one of the conductive steps at least to the bottom of the vertically-alternating tiers. Methods are also disclosed.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: November 16, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Paolo Tessariol, Justin B. Dorhout, Indra V. Chary, Jun Fang, Matthew Park, Zhiqiang Xie, Scott D. Stull, Daniel Osterberg, Jason Reece, Jian Li
  • Publication number: 20210343624
    Abstract: A method used in forming a memory array and conductive through-array-vias (TAVs) comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. A mask is formed comprising horizontally-elongated trench openings and operative TAV openings above the stack. Etching is conducted of unmasked portions of the stack through the trench and operative TAV openings in the mask to form horizontally-elongated trench openings in the stack and to form operative TAV openings in the stack. Conductive material is formed in the operative TAV openings in the stack to form individual operative TAVs in individual of the operative TAV openings in the stack. A wordline-intervening structure is formed in individual of the trench openings in the stack.
    Type: Application
    Filed: July 6, 2021
    Publication date: November 4, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Indra V. Chary, Chet E. Carter, Anilkumar Chandolu, Justin B. Dorhout, Jun Fang, Matthew J. King, Brett D. Lowe, Matthew Park, Justin D. Shepherdson
  • Patent number: 11121143
    Abstract: Some embodiments include an integrated assembly having a conductive expanse over conductive nodes. The conductive nodes include a first composition. A bottom surface of the conductive expanse includes a second composition which is different composition than the first composition. A stack is over the conductive expanse. The stack includes alternating first and second levels. Pillar structures extend vertically through the stack. Each of the pillar structures includes a post of conductive material laterally surrounded by an insulative liner. At least one of the posts extends through the conductive expanse to directly contact one of the conductive nodes. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: September 14, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Shuangqiang Luo, Indra V. Chary, Justin B. Dorhout, Rita J. Klein
  • Patent number: 11121146
    Abstract: A termination opening can be formed through the stack alternating dielectrics concurrently with forming contact openings through the stack. A termination structure can be formed in the termination opening. An additional opening can be formed through the termination structure and through the stack between groups of semiconductor structures that pass through the stack. In another example, an opening can be formed through the stack so that a first segment of the opening is between groups of semiconductor structures in a first region of the stack and a second segment of the opening is in a second region of the stack that does not include the groups of semiconductor structures. A material can be formed in the second segment so that the first segment terminates at the material. In some instances, the material can be implanted in the dielectrics in the second region through the second segment.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: September 14, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Matthew J. King, Anilkumar Chandolu, Indra V. Chary, Darwin A. Clampitt, Gordon Haller, Thomas George, Brett D. Lowe, David A. Daycock
  • Publication number: 20210257385
    Abstract: A method used in forming a memory array comprising strings of memory cells and operative through-array-vias (TAVs) comprises forming a stack comprising vertically-alternating insulative tiers and conductive tiers. The stack comprises a TAV region and an operative memory-cell-string region. The TAV region comprises spaced operative TAV areas. Operative channel-material strings are formed in the stack in the operative memory-cell-string region and dummy channel-material strings are formed in the stack in the TAV region laterally outside of and not within the operative TAV areas. Operative TAVs are formed in individual of the spaced operative TAV areas in the TAV region. Other methods and structure independent of method are disclosed.
    Type: Application
    Filed: March 29, 2021
    Publication date: August 19, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Yi Hu, Merri L. Carlson, Anilkumar Chandolu, Indra V. Chary, David Daycock, Harsh Narendrakumar Jain, Matthew J. King, Jian Li, Brett D. Lowe, Prakash Rau Mokhna Rau, Lifang Xu
  • Patent number: 11094592
    Abstract: A method of forming a semiconductor device comprises forming sacrificial structures and support pillars. The sacrificial structures comprise an isolated sacrificial structure in a slit region and connected sacrificial structures in a pillar region. Tiers are formed over the sacrificial structures and support pillars, and a portion of the tiers are removed to form tier pillars and tier openings, exposing the connected sacrificial structures and support pillars. The connected sacrificial structures are removed to form a cavity, a portion of the cavity extending below the isolated sacrificial structure. A cell film is formed over the tier pillars and over sidewalls of the cavity. A fill material is formed in the tier openings and over the cell film. A portion of the tiers in the slit region is removed, exposing the isolated sacrificial structure, which is removed to form a source opening. The source opening is connected to the cavity and a conductive material is formed in the source opening and in the cavity.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: August 17, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Anilkumar Chandolu, Matthew J. King, Indra V. Chary, Darwin A. Clampitt
  • Patent number: 11069598
    Abstract: A method used in forming a memory array and conductive through-array-vias (TAVs) comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. A mask is formed comprising horizontally-elongated trench openings and operative TAV openings above the stack. Etching is conducted of unmasked portions of the stack through the trench and operative TAV openings in the mask to form horizontally-elongated trench openings in the stack and to form operative TAV openings in the stack. Conductive material is formed in the operative TAV openings in the stack to form individual operative TAVs in individual of the operative TAV openings in the stack. A wordline-intervening structure is formed in individual of the trench openings in the stack.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: July 20, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Indra V. Chary, Chet E. Carter, Anilkumar Chandolu, Justin B. Dorhout, Jun Fang, Matthew J. King, Brett D. Lowe, Matthew Park, Justin D. Shepherdson
  • Publication number: 20210217762
    Abstract: A microelectronic device comprising a stack structure comprising a non-staircase region, a staircase region, and an array region. Each of the non-staircase region, the staircase region, and the array region comprises tiers of alternating conductive materials and dielectric materials. One or more pillars are in the non-staircase region and in the array region, and one or more supports are in the staircase region. A conductive material is in each of the non-staircase region, the staircase region, and the array region and extends vertically into a source adjacent to the tiers. The source comprises corrosion containment features in each of the non-staircase region, the staircase region, and the array region, adjacent to the conductive material in the source. Additional microelectronic devices, electronic systems, and methods are also disclosed.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 15, 2021
    Inventors: Shuangqiang Luo, Indra V. Chary
  • Publication number: 20210126010
    Abstract: A method of forming a microelectronic device comprises forming a microelectronic device structure. The microelectronic device structure comprises a stack structure comprising insulative structures and additional insulative structures vertically alternating with the insulative structures, a dielectric structure vertically extending partially through the stack structure, and a dielectric material vertically overlying and horizontally extending across the stack structure and the dielectric structure. Portions of at least the dielectric material and the dielectric structure are removed to form a trench vertically overlying and at least partially horizontally overlapping a remaining portion of the dielectric structure. The trench is substantially filled with additional dielectric material. Microelectronic devices, memory devices, and electronic systems are also described.
    Type: Application
    Filed: October 29, 2019
    Publication date: April 29, 2021
    Inventors: Shuangqiang Luo, Indra V. Chary, Justin B. Dorhout
  • Patent number: 10985179
    Abstract: A method used in forming a memory array comprising strings of memory cells and operative through-array-vias (TAVs) comprises forming a stack comprising vertically-alternating insulative tiers and conductive tiers. The stack comprises a TAV region and an operative memory-cell-string region. The TAV region comprises spaced operative TAV areas. Operative channel-material strings are formed in the stack in the operative memory-cell-string region and dummy channel-material strings are formed in the stack in the TAV region laterally outside of and not within the operative TAV areas. Operative TAVs are formed in individual of the spaced operative TAV areas in the TAV region. Other methods and structure independent of method are disclosed.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: April 20, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Yi Hu, Merri L. Carlson, Anilkumar Chandolu, Indra V. Chary, David Daycock, Harsh Narendrakumar Jain, Matthew J. King, Jian Li, Brett D. Lowe, Prakash Rau Mokhna Rau, Lifang Xu
  • Publication number: 20210057440
    Abstract: A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Operative channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. Upper masses comprise first material laterally-between and longitudinally-spaced-along immediately-laterally-adjacent of the memory blocks and second material laterally-between and longitudinally-spaced-along the immediately-laterally-adjacent memory blocks longitudinally-between and under the upper masses. The second material is of different composition from that of the first material. The second material comprises insulative material. Other embodiments, including method, are disclosed.
    Type: Application
    Filed: August 25, 2019
    Publication date: February 25, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Daniel Billingsley, Indra V. Chary, Rita J. Klein
  • Publication number: 20210057441
    Abstract: A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Operative channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. The operative channel-material strings in the laterally-spaced memory blocks comprise part of a memory plane. An elevationally-extending wall is in the memory plane laterally-between immediately-laterally-adjacent of the memory blocks and that completely encircles an island that is laterally-between immediately-laterally-adjacent of the memory blocks in the memory plane. Other embodiments, including method are disclosed.
    Type: Application
    Filed: August 25, 2019
    Publication date: February 25, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Lifang Xu, Indra V. Chary, Justin B. Dorhout, Jian Li, Haitao Liu, Paolo Tessariol
  • Publication number: 20210043644
    Abstract: A method used in forming a memory array comprising strings of memory cells and operative through-array-vias (TAVs) comprises forming a stack comprising vertically-alternating insulative tiers and conductive tiers. The stack comprises a TAV region and an operative memory-cell-string region. The TAV region comprises spaced operative TAV areas. Operative channel-material strings are formed in the stack in the operative memory-cell-string region and dummy channel-material strings are formed in the stack in the TAV region laterally outside of and not within the operative TAV areas. Operative TAVs are formed in individual of the spaced operative TAV areas in the TAV region. Other methods and structure independent of method are disclosed.
    Type: Application
    Filed: August 5, 2019
    Publication date: February 11, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Yi Hu, Merri L. Carlson, Anilkumar Chandolu, Indra V. Chary, David Daycock, Harsh Narendrakumar Jain, Matthew J. King, Jian Li, Brett D. Lowe, Prakash Rau Mokhna Rau, Lifang Xu
  • Patent number: 10879267
    Abstract: A microelectronic device comprises vertically alternating conductive structures and insulating structures arranged in tiers, each of the tiers individually comprising one of the conductive structures and one of the insulating structures; a staircase structure within the stack structure and having steps comprising edges of at least some of the tiers; a source tier underlying the stack structure and comprising: a source structure, and first discrete conductive structures horizontally separated from one another and the source structure by at least one dielectric material; conductive contact structures on the steps of the staircase structure; and first conductive pillar structures horizontally alternating with the conductive contact structures and vertically extending through the stack structure to the first discrete conductive structures of the source tier. A memory device, a 3D NAND Flash memory device, and an electronic system are also described.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: December 29, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Shuangqiang Luo, Indra V. Chary, Justin B. Dorhout
  • Publication number: 20200402890
    Abstract: A method used in forming a memory array and conductive through-array-vias (TAVs) comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. A mask is formed comprising horizontally-elongated trench openings and operative TAV openings above the stack. Etching is conducted of unmasked portions of the stack through the trench and operative TAV openings in the mask to form horizontally-elongated trench openings in the stack and to form operative TAV openings in the stack. Conductive material is formed in the operative TAV openings in the stack to form individual operative TAVs in individual of the operative TAV openings in the stack. A wordline-intervening structure is formed in individual of the trench openings in the stack.
    Type: Application
    Filed: June 18, 2019
    Publication date: December 24, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Indra V. Chary, Chet E. Carter, Anilkumar Chandolu, Justin B. Dorhout, Jun Fang, Matthew J. King, Brett D. Lowe, Matthew Park, Justin D. Shepherdson
  • Publication number: 20200373316
    Abstract: Some embodiments include an integrated assembly having a conductive expanse over conductive nodes. The conductive nodes include a first composition. A bottom surface of the conductive expanse includes a second composition which is different composition than the first composition. A stack is over the conductive expanse. The stack includes alternating first and second levels. Pillar structures extend vertically through the stack. Each of the pillar structures includes a post of conductive material laterally surrounded by an insulative liner. At least one of the posts extends through the conductive expanse to directly contact one of the conductive nodes. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: May 24, 2019
    Publication date: November 26, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Shuangqiang Luo, Indra V. Chary, Justin B. Dorhout, Rita J. Klein