Patents by Inventor Indra V. Chary

Indra V. Chary has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10879267
    Abstract: A microelectronic device comprises vertically alternating conductive structures and insulating structures arranged in tiers, each of the tiers individually comprising one of the conductive structures and one of the insulating structures; a staircase structure within the stack structure and having steps comprising edges of at least some of the tiers; a source tier underlying the stack structure and comprising: a source structure, and first discrete conductive structures horizontally separated from one another and the source structure by at least one dielectric material; conductive contact structures on the steps of the staircase structure; and first conductive pillar structures horizontally alternating with the conductive contact structures and vertically extending through the stack structure to the first discrete conductive structures of the source tier. A memory device, a 3D NAND Flash memory device, and an electronic system are also described.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: December 29, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Shuangqiang Luo, Indra V. Chary, Justin B. Dorhout
  • Publication number: 20200402890
    Abstract: A method used in forming a memory array and conductive through-array-vias (TAVs) comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. A mask is formed comprising horizontally-elongated trench openings and operative TAV openings above the stack. Etching is conducted of unmasked portions of the stack through the trench and operative TAV openings in the mask to form horizontally-elongated trench openings in the stack and to form operative TAV openings in the stack. Conductive material is formed in the operative TAV openings in the stack to form individual operative TAVs in individual of the operative TAV openings in the stack. A wordline-intervening structure is formed in individual of the trench openings in the stack.
    Type: Application
    Filed: June 18, 2019
    Publication date: December 24, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Indra V. Chary, Chet E. Carter, Anilkumar Chandolu, Justin B. Dorhout, Jun Fang, Matthew J. King, Brett D. Lowe, Matthew Park, Justin D. Shepherdson
  • Publication number: 20200373316
    Abstract: Some embodiments include an integrated assembly having a conductive expanse over conductive nodes. The conductive nodes include a first composition. A bottom surface of the conductive expanse includes a second composition which is different composition than the first composition. A stack is over the conductive expanse. The stack includes alternating first and second levels. Pillar structures extend vertically through the stack. Each of the pillar structures includes a post of conductive material laterally surrounded by an insulative liner. At least one of the posts extends through the conductive expanse to directly contact one of the conductive nodes. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: May 24, 2019
    Publication date: November 26, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Shuangqiang Luo, Indra V. Chary, Justin B. Dorhout, Rita J. Klein
  • Publication number: 20200279867
    Abstract: In an example, a method of forming a stacked memory array includes forming a stack of alternating first and second dielectrics, forming a termination structure through the stack, the termination structure comprising a dielectric liner around a conductor, forming a set of contacts concurrently with forming the termination structure, forming a third dielectric over an upper surface of the stack and an upper surface of the termination structure, forming a first opening through the third dielectric and the stack between first and second groups of semiconductor structures so that the first opening exposes an upper surface of the conductor, and removing the conductor from the termination structure to form a second opening lined with the dielectric liner. In some examples, the dielectric liner can include a rectangular or a triangular tab or a pair of prongs that can have a rectangular profile or that can be tapered.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Inventors: Matthew J. King, Anilkumar Chandolu, Indra V. Chary, Darwin A. Clampitt, Gordon Haller, Thomas George, Brett D. Lowe, David A. Daycock
  • Patent number: 10727242
    Abstract: An array of elevationally-extending strings of memory cells, where the memory cells individually comprise a programmable charge storage transistor, comprises a substrate comprising a first region containing memory cells and a second region not containing memory cells laterally of the first region. The first region comprises vertically-alternating tiers of insulative material and control gate material. The second region comprises vertically-alternating tiers of different composition insulating materials laterally of the first region. A channel pillar comprising semiconductive channel material extends elevationally through multiple of the vertically-alternating tiers within the first region. Tunnel insulator, programmable charge storage material, and control gate blocking insulator are between the channel pillar and the control gate material of individual of the tiers of the control gate material within the first region.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: July 28, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Matthew Park, Joseph Neil Greeley, Chet E. Carter, Martin C. Roberts, Indra V. Chary, Vinayak Shamanna, Ryan Meyer, Paolo Tessariol
  • Publication number: 20200161187
    Abstract: A method of forming a semiconductor device comprises forming sacrificial structures and support pillars. The sacrificial structures comprise an isolated sacrificial structure in a slit region and connected sacrificial structures in a pillar region. Tiers are formed over the sacrificial structures and support pillars, and a portion of the tiers are removed to form tier pillars and tier openings, exposing the connected sacrificial structures and support pillars. The connected sacrificial structures are removed to form a cavity, a portion of the cavity extending below the isolated sacrificial structure. A cell film is formed over the tier pillars and over sidewalls of the cavity. A fill material is formed in the tier openings and over the cell film. A portion of the tiers in the slit region is removed, exposing the isolated sacrificial structure, which is removed to form a source opening. The source opening is connected to the cavity and a conductive material is formed in the source opening and in the cavity.
    Type: Application
    Filed: January 22, 2020
    Publication date: May 21, 2020
    Inventors: Anilkumar Chandolu, Matthew J. King, Indra V. Chary, Darwin A. Clampitt
  • Patent number: 10658380
    Abstract: In an example, a method of forming a stacked memory array includes forming a stack of alternating first and second dielectrics, forming a termination structure through the stack, the termination structure comprising a dielectric liner around a conductor, forming a set of contacts concurrently with forming the termination structure, forming a third dielectric over an upper surface of the stack and an upper surface of the termination structure, forming a first opening through the third dielectric and the stack between first and second groups of semiconductor structures so that the first opening exposes an upper surface of the conductor, and removing the conductor from the termination structure to form a second opening lined with the dielectric liner. In some examples, the dielectric liner can include a rectangular or a triangular tab or a pair of prongs that can have a rectangular profile or that can be tapered.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: May 19, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Matthew J. King, Anilkumar Chandolu, Indra V. Chary, Darwin A. Clampitt, Gordon Haller, Thomas George, Brett D. Lowe, David A. Daycock
  • Publication number: 20200127004
    Abstract: A method used in forming a memory array comprises forming a stack comprising vertically-alternating insulative tiers and wordline tiers. The stack comprises an insulator tier above the wordline tiers. The insulator tier comprises first insulator material comprising silicon, nitrogen, and one or more of carbon, oxygen, boron, and phosphorus. The first insulator material is patterned to form first horizontally-elongated trenches in the insulator tier. Second insulator material is formed in the first trenches along sidewalls of the first insulator material. The second insulator material is of different composition from that of the first insulator material and narrows the first trenches. After forming the second insulator material, second horizontally-elongated trenches are formed through the insulative tiers and the wordline tiers. The second trenches are horizontally along the narrowed first trenches laterally between and below the second insulator material.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 23, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Erik Byers, Merri L. Carlson, Indra V. Chary, Damir Fazil, John D. Hopkins, Nancy M. Lomeli, Eldon Nelson, Joel D. Peterson, Dimitrios Pavlopoulos, Paolo Tessariol, Lifang Xu
  • Publication number: 20200119036
    Abstract: A termination opening can be formed through the stack alternating dielectrics concurrently with forming contact openings through the stack. A termination structure can be formed in the termination opening. An additional opening can be formed through the termination structure and through the stack between groups of semiconductor structures that pass through the stack. In another example, an opening can be formed through the stack so that a first segment of the opening is between groups of semiconductor structures in a first region of the stack and a second segment of the opening is in a second region of the stack that does not include the groups of semiconductor structures. A material can be formed in the second segment so that the first segment terminates at the material. In some instances, the material can be implanted in the dielectrics in the second region through the second segment.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 16, 2020
    Inventors: Matthew J. King, Anilkumar Chandolu, Indra V. Chary, Darwin A. Clampitt, Gordon Haller, Thomas George, Brett D. Lowe, David A. Daycock
  • Publication number: 20200119040
    Abstract: In an example, a method of forming a stacked memory array includes forming a stack of alternating first and second dielectrics, forming a termination structure through the stack, the termination structure comprising a dielectric liner around a conductor, forming a set of contacts concurrently with forming the termination structure, forming a third dielectric over an upper surface of the stack and an upper surface of the termination structure, forming a first opening through the third dielectric and the stack between first and second groups of semiconductor structures so that the first opening exposes an upper surface of the conductor, and removing the conductor from the termination structure to form a second opening lined with the dielectric liner. In some examples, the dielectric liner can include a rectangular or a triangular tab or a pair of prongs that can have a rectangular profile or that can be tapered.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 16, 2020
    Inventors: Matthew J. King, Anilkumar Chandolu, Indra V. Chary, Darwin A. Clampitt, Gordon Haller, Thomas George, Brett D. Lowe, David A. Daycock
  • Patent number: 10580795
    Abstract: A microelectronic device comprises vertically alternating conductive structures and insulating structures arranged in tiers, each of the tiers individually comprising one of the conductive structures and one of the insulating structures; a staircase structure within the stack structure and having steps comprising edges of at least some of the tiers; a source tier underlying the stack structure and comprising: a source structure, and first discrete conductive structures horizontally separated from one another and the source structure by at least one dielectric material; conductive contact structures on the steps of the staircase structure; and first conductive pillar structures horizontally alternating with the conductive contact structures and vertically extending through the stack structure to the first discrete conductive structures of the source tier. A memory device, a 3D NAND Flash memory device, and an electronic system are also described.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: March 3, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Shuangqiang Luo, Indra V. Chary, Justin B. Dorhout
  • Patent number: 10566241
    Abstract: A method of forming a semiconductor device comprises forming sacrificial structures and support pillars. The sacrificial structures comprise an isolated sacrificial structure in a slit region and connected sacrificial structures in a pillar region. Tiers are formed over the sacrificial structures and support pillars, and a portion of the tiers are removed to form tier pillars and tier openings, exposing the connected sacrificial structures and support pillars. The connected sacrificial structures are removed to form a cavity, a portion of the cavity extending below the isolated sacrificial structure. A cell film is formed over the tier pillars and over sidewalls of the cavity. A fill material is formed in the tier openings and over the cell film. A portion of the tiers in the slit region is removed, exposing the isolated sacrificial structure, which is removed to form a source opening. The source opening is connected to the cavity and a conductive material is formed in the source opening and in the cavity.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: February 18, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Anilkumar Chandolu, Matthew J. King, Indra V. Chary, Darwin A. Clampitt
  • Publication number: 20190229127
    Abstract: An array of elevationally-extending strings of memory cells, where the memory cells individually comprise a programmable charge storage transistor, comprises a substrate comprising a first region containing memory cells and a second region not containing memory cells laterally of the first region. The first region comprises vertically-alternating tiers of insulative material and control gate material. The second region comprises vertically-alternating tiers of different composition insulating materials laterally of the first region. A channel pillar comprising semiconductive channel material extends elevationally through multiple of the vertically-alternating tiers within the first region. Tunnel insulator, programmable charge storage material, and control gate blocking insulator are between the channel pillar and the control gate material of individual of the tiers of the control gate material within the first region.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Matthew Park, Joseph Neil Greeley, Chet E. Carter, Martin C. Roberts, Indra V. Chary, Vinayak Shamanna, Ryan Meyer, Paolo Tessariol
  • Patent number: 10263007
    Abstract: An array of elevationally-extending strings of memory cells, where the memory cells individually comprise a programmable charge storage transistor, comprises a substrate comprising a first region containing memory cells and a second region not containing memory cells laterally of the first region. The first region comprises vertically-alternating tiers of insulative material and control gate material. The second region comprises vertically-alternating tiers of different composition insulating materials laterally of the first region. A channel pillar comprising semiconductive channel material extends elevationally through multiple of the vertically-alternating tiers within the first region. Tunnel insulator, programmable charge storage material, and control gate blocking insulator are between the channel pillar and the control gate material of individual of the tiers of the control gate material within the first region.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: April 16, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Matthew Park, Joseph Neil Greeley, Chet E. Carter, Martin C. Roberts, Indra V. Chary, Vinayak Shamanna, Ryan Meyer, Paolo Tessariol
  • Publication number: 20190081061
    Abstract: A device comprises an array of elevationally-extending transistors and a circuit structure adjacent and electrically coupled to the elevationally-extending transistors of the array. The circuit structure comprises a stair step structure comprising vertically-alternating tiers comprising conductive steps that are at least partially elevationally separated from one another by insulative material. Operative conductive vias individually extend elevationally through one of the conductive steps at least to a bottom of the vertically-alternating tiers and individually electrically couple to an electronic component below the vertically-alternating tiers. Dummy structures individually extend elevationally through one of the conductive steps at least to the bottom of the vertically-alternating tiers. Methods are also disclosed.
    Type: Application
    Filed: September 14, 2017
    Publication date: March 14, 2019
    Inventors: Paolo Tessariol, Justin B. Dorhout, Indra V. Chary, Jun Fang, Matthew Park, Zhiqiang Xie, Scott D. Stull, Daniel Osterberg, Jason Reece, Jian Li
  • Publication number: 20180286879
    Abstract: An array of elevationally-extending strings of memory cells, where the memory cells individually comprise a programmable charge storage transistor, comprises a substrate comprising a first region containing memory cells and a second region not containing memory cells laterally of the first region. The first region comprises vertically-alternating tiers of insulative material and control gate material. The second region comprises vertically-alternating tiers of different composition insulating materials laterally of the first region. A channel pillar comprising semiconductive channel material extends elevationally through multiple of the vertically-alternating tiers within the first region. Tunnel insulator, programmable charge storage material, and control gate blocking insulator are between the channel pillar and the control gate material of individual of the tiers of the control gate material within the first region.
    Type: Application
    Filed: June 7, 2018
    Publication date: October 4, 2018
    Applicant: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Matthew Park, Joseph Neil Greeley, Chet E. Carter, Martin C. Roberts, Indra V. Chary, Vinayak Shamanna, Ryan Meyer, Paolo Tessariol
  • Patent number: 10014309
    Abstract: An array of elevationally-extending strings of memory cells, where the memory cells individually comprise a programmable charge storage transistor, comprises a substrate comprising a first region containing memory cells and a second region not containing memory cells laterally of the first region. The first region comprises vertically-alternating tiers of insulative material and control gate material. The second region comprises vertically-alternating tiers of different composition insulating materials laterally of the first region. A channel pillar comprising semiconductive channel material extends elevationally through multiple of the vertically-alternating tiers within the first region. Tunnel insulator, programmable charge storage material, and control gate blocking insulator are between the channel pillar and the control gate material of individual of the tiers of the control gate material within the first region.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: July 3, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Matthew Park, Joseph Neil Greeley, Chet E. Carter, Martin C. Roberts, Indra V. Chary, Vinayak Shamanna, Ryan Meyer, Paolo Tessariol
  • Publication number: 20180047739
    Abstract: An array of elevationally-extending strings of memory cells, where the memory cells individually comprise a programmable charge storage transistor, comprises a substrate comprising a first region containing memory cells and a second region not containing memory cells laterally of the first region. The first region comprises vertically-alternating tiers of insulative material and control gate material. The second region comprises vertically-alternating tiers of different composition insulating materials laterally of the first region. A channel pillar comprising semiconductive channel material extends elevationally through multiple of the vertically-alternating tiers within the first region. Tunnel insulator, programmable charge storage material, and control gate blocking insulator are between the channel pillar and the control gate material of individual of the tiers of the control gate material within the first region.
    Type: Application
    Filed: August 9, 2016
    Publication date: February 15, 2018
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Matthew Park, Joseph Neil Greeley, Chet E. Carter, Martin C. Roberts, Indra V. Chary, Vinayak Shamanna, Ryan Meyer, Paolo Tessariol