Patents by Inventor Ingemar Carlsson

Ingemar Carlsson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220043095
    Abstract: A first resistivity value and a correlation function relating thickness of a conductive layer having the first resistivity value to a signal from an in-situ monitoring system are stored. A second resistivity value for a conductive layer on a substrate is received. A sequence of signal values that depend on thickness of the conductive layer is received from an in-situ electromagnetic induction monitoring system that monitors the substrate during polishing. A sequence of thickness values is generated based on the sequence of signal values and the correlation function. For at least some thickness values of the sequence of thickness values adjusted thickness values are generated that compensate for variation between the first resistivity value and the second resistivity value to generate a sequence of adjusted thickness values. A polishing endpoint is detected or an adjustment for a polishing parameter is determined based on the sequence of adjusted thickness values.
    Type: Application
    Filed: October 22, 2021
    Publication date: February 10, 2022
    Inventors: Kun Xu, Ingemar Carlsson, Shih-Haur Shen, Boguslaw A. Swedek, Tzu-Yu Liu
  • Patent number: 11199605
    Abstract: A first resistivity value and a correlation function relating thickness of a conductive layer having the first resistivity value to a signal from an in-situ monitoring system are stored. A second resistivity value for a conductive layer on a substrate is received. A sequence of signal values that depend on thickness of the conductive layer is received from an in-situ electromagnetic induction monitoring system that monitors the substrate during polishing. A sequence of thickness values is generated based on the sequence of signal values and the correlation function. For at least some thickness values of the sequence of thickness values adjusted thickness values are generated that compensate for variation between the first resistivity value and the second resistivity value to generate a sequence of adjusted thickness values. A polishing endpoint is detected or an adjustment for a polishing parameter is determined based on the sequence of adjusted thickness values.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: December 14, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Kun Xu, Ingemar Carlsson, Shih-Haur Shen, Boguslaw A. Swedek, Tzu-Yu Liu
  • Patent number: 11079459
    Abstract: A first resistivity value and a correlation function relating thickness of a conductive layer having the first resistivity value to a signal from an in-situ monitoring system are stored. A second resistivity value for a conductive layer on a substrate is received. A sequence of signal values that depend on thickness of the conductive layer is received from an in-situ electromagnetic induction monitoring system that monitors the substrate during polishing. A sequence of thickness values is generated based on the sequence of signal values and the correlation function. For at least some thickness values of the sequence of thickness values adjusted thickness values are generated that compensate for variation between the first resistivity value and the second resistivity value to generate a sequence of adjusted thickness values. A polishing endpoint is detected or an adjustment for a polishing parameter is determined based on the sequence of adjusted thickness values.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: August 3, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Kun Xu, Ingemar Carlsson, Shih-Haur Shen, Boguslaw A. Swedek, Tzu-Yu Liu
  • Patent number: 10741459
    Abstract: In fabrication of an integrated circuit having a layer with a plurality of conductive interconnects, a layer of a substrate is polished to provide the layer of the integrated circuit. The layer of the substrate includes conductive lines to provide the conductive interconnects. The layer of the substrate includes a closed conductive loop formed of a conductive material in a trench. A depth of the conductive material in the trench is monitored using an inductive monitoring system and a signal is generated. Monitoring includes generating a magnetic field that intermittently passes through the closed conductive loop. A sequence of values over time is extracted from the signal, the sequence of values representing the depth of the conductive material over time.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: August 11, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Wei Lu, Zhefu Wang, Zhihong Wang, Hassan G. Iravani, Dominic J. Benvegnu, Ingemar Carlsson, Boguslaw A. Swedek, Wen-Chiang Tu
  • Patent number: 10589397
    Abstract: A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first pre-polish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: March 17, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Alain Duboust, Wen-Chiang Tu, Shih-Haur Shen, Jimin Zhang, Ingemar Carlsson, Boguslaw A. Swedek, Zhihong Wang, Stephen Jew, David H. Mai, Huyen Tran
  • Patent number: 10556315
    Abstract: A method of controlling polishing includes polishing a substrate at a first polishing station, monitoring the substrate with a first eddy current monitoring system to generate a first signal, determining an ending value of the first signal for an end of polishing of the substrate at the first polishing station, determining a first temperature at the first polishing station, polishing the substrate at a second polishing station, monitoring the substrate with a second eddy current monitoring system to generate a second signal, determining a starting value of the second signal for a start of polishing of the substrate at the second polishing station, determining a gain for the second polishing station based on the ending value, the starting value and the first temperature, and calculating a third signal based on the second signal and the gain.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: February 11, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Kun Xu, Shih-Haur Shen, Boguslaw A. Swedek, Ingemar Carlsson, Doyle E. Bennett, Wen-Chiang Tu, Hassan G. Iravani, Tzu-Yu Liu
  • Patent number: 10427272
    Abstract: A method of polishing includes polishing a layer of a substrate, monitoring the layer of the substrate with an in-situ monitoring system to generate signal that depends on a thickness of the layer, filtering the signal to generate a filtered signal, determining an adjusted threshold value from an original threshold value and a time delay value representative of time required for filtering the signal, and triggering a polishing endpoint when the filtered signal crosses the adjusted threshold value.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: October 1, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Kun Xu, Kevin Lin, Ingemar Carlsson, Shih-Haur Shen, Tzu-Yu Liu
  • Publication number: 20190134775
    Abstract: A method of controlling polishing includes polishing a substrate at a first polishing station, monitoring the substrate with a first eddy current monitoring system to generate a first signal, determining an ending value of the first signal for an end of polishing of the substrate at the first polishing station, determining a first temperature at the first polishing station, polishing the substrate at a second polishing station, monitoring the substrate with a second eddy current monitoring system to generate a second signal, determining a starting value of the second signal for a start of polishing of the substrate at the second polishing station, determining a gain for the second polishing station based on the ending value, the starting value and the first temperature, and calculating a third signal based on the second signal and the gain.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 9, 2019
    Inventors: Kun Xu, Shih-Haur Shen, Boguslaw A. Swedek, Ingemar Carlsson, Doyle E. Bennett, Wen-Chiang Tu, Hassan G. Iravani, Tzu-Yu Liu
  • Patent number: 10207386
    Abstract: A method of controlling polishing includes polishing a substrate at a first polishing station, monitoring the substrate with a first eddy current monitoring system to generate a first signal, determining an ending value of the first signal for an end of polishing of the substrate at the first polishing station, determining a first temperature at the first polishing station, polishing the substrate at a second polishing station, monitoring the substrate with a second eddy current monitoring system to generate a second signal, determining a starting value of the second signal for a start of polishing of the substrate at the second polishing station, determining a gain for the second polishing station based on the ending value, the starting value and the first temperature, and calculating a third signal based on the second signal and the gain.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: February 19, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Kun Xu, Shih-Haur Shen, Boguslaw A. Swedek, Ingemar Carlsson, Doyle E. Bennett, Wen-Chiang Tu, Hassan G. Iravani, Tzu-Yu Liu
  • Publication number: 20190035699
    Abstract: In fabrication of an integrated circuit having a layer with a plurality of conductive interconnects, a layer of a substrate is polished to provide the layer of the integrated circuit. The layer of the substrate includes conductive lines to provide the conductive interconnects. The layer of the substrate includes a closed conductive loop formed of a conductive material in a trench. A depth of the conductive material in the trench is monitored using an inductive monitoring system and a signal is generated. Monitoring includes generating a magnetic field that intermittently passes through the closed conductive loop. A sequence of values over time is extracted from the signal, the sequence of values representing the depth of the conductive material over time.
    Type: Application
    Filed: October 2, 2018
    Publication date: January 31, 2019
    Inventors: Wei Lu, Zhefu Wang, Zhihong Wang, Hassan G. Iravani, Dominic J. Benvegnu, Ingemar Carlsson, Boguslaw A. Swedek, Wen-Chiang Tu
  • Patent number: 10103073
    Abstract: In fabrication of an integrated circuit having a layer with a plurality of conductive interconnects, a layer of a substrate is polished to provide the layer of the integrated circuit. The layer of the substrate includes conductive lines to provide the conductive interconnects. The layer of the substrate includes a closed conductive loop formed of a conductive material in a trench. A depth of the conductive material in the trench is monitored using an inductive monitoring system and a signal is generated. Monitoring includes generating a magnetic field that intermittently passes through the closed conductive loop. A sequence of values over time is extracted from the signal, the sequence of values representing the depth of the conductive material over time.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: October 16, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Wei Lu, Zhefu Wang, Zhihong Wang, Hassan G. Iravani, Dominic J. Benvegnu, Ingemar Carlsson, Boguslaw A. Swedek, Wen-Chiang Tu
  • Publication number: 20180203090
    Abstract: A first resistivity value and a correlation function relating thickness of a conductive layer having the first resistivity value to a signal from an in-situ monitoring system are stored. A second resistivity value for a conductive layer on a substrate is received. A sequence of signal values that depend on thickness of the conductive layer is received from an in-situ electromagnetic induction monitoring system that monitors the substrate during polishing. A sequence of thickness values is generated based on the sequence of signal values and the correlation function. For at least some thickness values of the sequence of thickness values adjusted thickness values are generated that compensate for variation between the first resistivity value and the second resistivity value to generate a sequence of adjusted thickness values. A polishing endpoint is detected or an adjustment for a polishing parameter is determined based on the sequence of adjusted thickness values.
    Type: Application
    Filed: January 10, 2018
    Publication date: July 19, 2018
    Inventors: Kun Xu, Ingemar Carlsson, Shih-Haur Shen, Boguslaw A. Swedek, Tzu-Yu Liu
  • Publication number: 20180203089
    Abstract: A first resistivity value and a correlation function relating thickness of a conductive layer having the first resistivity value to a signal from an in-situ monitoring system are stored. A second resistivity value for a conductive layer on a substrate is received. A sequence of signal values that depend on thickness of the conductive layer is received from an in-situ electromagnetic induction monitoring system that monitors the substrate during polishing. A sequence of thickness values is generated based on the sequence of signal values and the correlation function. For at least some thickness values of the sequence of thickness values adjusted thickness values are generated that compensate for variation between the first resistivity value and the second resistivity value to generate a sequence of adjusted thickness values. A polishing endpoint is detected or an adjustment for a polishing parameter is determined based on the sequence of adjusted thickness values.
    Type: Application
    Filed: January 10, 2018
    Publication date: July 19, 2018
    Inventors: Kun Xu, Ingemar Carlsson, Shih-Haur Shen, Boguslaw A. Swedek, Tzu-Yu Liu
  • Publication number: 20180079052
    Abstract: A method of polishing includes polishing a layer of a substrate, monitoring the layer of the substrate with an in-situ monitoring system to generate signal that depends on a thickness of the layer, filtering the signal to generate a filtered signal, determining an adjusted threshold value from an original threshold value and a time delay value representative of time required for filtering the signal, and triggering a polishing endpoint when the filtered signal crosses the adjusted threshold value.
    Type: Application
    Filed: September 20, 2017
    Publication date: March 22, 2018
    Inventors: Kun Xu, Kevin Lin, Ingemar Carlsson, Shih-Haur Shen, Tzu-Yu Liu
  • Publication number: 20170365532
    Abstract: In fabrication of an integrated circuit having a layer with a plurality of conductive interconnects, a layer of a substrate is polished to provide the layer of the integrated circuit. The layer of the substrate includes conductive lines to provide the conductive interconnects. The layer of the substrate includes a closed conductive loop formed of a conductive material in a trench. A depth of the conductive material in the trench is monitored using an inductive monitoring system and a signal is generated. Monitoring includes generating a magnetic field that intermittently passes through the closed conductive loop. A sequence of values over time is extracted from the signal, the sequence of values representing the depth of the conductive material over time.
    Type: Application
    Filed: September 1, 2017
    Publication date: December 21, 2017
    Inventors: Wei Lu, Zhefu Wang, Zhihong Wang, Hassan G. Iravani, Dominic J. Benvegnu, Ingemar Carlsson, Boguslaw A. Swedek, Wen-Chiang Tu
  • Patent number: 9754846
    Abstract: In fabrication of an integrated circuit having a layer with a plurality of conductive interconnects, a layer of a substrate is polished to provide the layer of the integrated circuit. The layer of the substrate includes conductive lines to provide the conductive interconnects. The layer of the substrate includes a closed conductive loop formed of a conductive material in a trench. A depth of the conductive material in the trench is monitored using an inductive monitoring system and a signal is generated. Monitoring includes generating a magnetic field that intermittently passes through the closed conductive loop. A sequence of values over time is extracted from the signal, the sequence of values representing the depth of the conductive material over time.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: September 5, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Wei Lu, Zhefu Wang, Zhihong Wang, Hassan G. Iravani, Dominic J. Benvegnu, Ingemar Carlsson, Boguslaw A. Swedek, Wen-Chiang Tu
  • Publication number: 20170151647
    Abstract: A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first pre-polish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.
    Type: Application
    Filed: February 3, 2017
    Publication date: June 1, 2017
    Applicant: Applied Materials, Inc.
    Inventors: Alain Duboust, Wen-Chiang Tu, Shih-Haur Shen, Jimin Zhang, Ingemar Carlsson, Boguslaw A. Swedek, Zhihong Wang, Stephen Jew, David H. Mai, Huyen Tran
  • Patent number: 9636797
    Abstract: Among other things, a method of controlling polishing during a polishing process is described. The method includes receiving a measurement of a thickness, thick(t), of a conductive layer of a substrate undergoing polishing from an in-situ monitoring system at a time t; receiving a measured temperature, T(t), associated with the conductive layer at the time t; calculating resistivity ?T of the conductive layer at the measured temperature T(t); adjusting the measurement of the thickness using the calculated resistivity ?T to generate an adjusted measured thickness; and detecting a polishing endpoint or an adjustment for a polishing parameter based on the adjusted measured thickness.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: May 2, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Kun Xu, Ingemar Carlsson, Boguslaw A. Swedek, Doyle E. Bennett, Shih-Haur Shen, Hassan G Iravani, Wen-Chiang Tu, Tzu-Yu Liu
  • Patent number: 9472475
    Abstract: A method of controlling polishing includes storing a desired ratio representing a ratio for a clearance time of a first zone of a substrate to a clearance time of a second zone of the substrate. During polishing of a first substrate, an overlying layer is monitored, a sequence of measurements is generated, and the measurements are sorted a first group associated with the first zone of the substrate and a second group associated with the second zone on the substrate. A first time and a second time at which the overlying layer is cleared is determined based on the measurements from the first group and the second group, respectively. At least one adjusted polishing pressure is calculated for the first zone based on a first pressure applied in the first zone during polishing the first substrate, the first time, the second time, and the desired ratio.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: October 18, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Kun Xu, Ingemar Carlsson, Tzu-Yu Liu, Shih-Haur Shen, Boguslaw A. Swedek, Wen-Chiang Tu, Lakshmanan Karuppiah
  • Publication number: 20160158908
    Abstract: A method of controlling polishing includes polishing a substrate at a first polishing station, monitoring the substrate with a first eddy current monitoring system to generate a first signal, determining an ending value of the first signal for an end of polishing of the substrate at the first polishing station, determining a first temperature at the first polishing station, polishing the substrate at a second polishing station, monitoring the substrate with a second eddy current monitoring system to generate a second signal, determining a starting value of the second signal for a start of polishing of the substrate at the second polishing station, determining a gain for the second polishing station based on the ending value, the starting value and the first temperature, and calculating a third signal based on the second signal and the gain.
    Type: Application
    Filed: February 17, 2016
    Publication date: June 9, 2016
    Applicant: Applied Materials, Inc.
    Inventors: Kun Xu, Shih-Haur Shen, Boguslaw A. Swedek, Ingemar Carlsson, Doyle E. Bennett, Wen-Chiang Tu, Hassan G. Iravani, Tzu-Yu Liu