Patents by Inventor Iris Moder

Iris Moder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11881397
    Abstract: A semiconductor substrate includes a base portion, an auxiliary layer and a surface layer. The auxiliary layer is formed on the base portion. The surface layer is formed on the auxiliary layer. The surface layer is in contact with a first main surface of the semiconductor substrate. The auxiliary layer has a different electrochemical dissolution efficiency than the base portion and the surface layer. At least a portion of the auxiliary layer and at least a portion of the surface layer are converted into a porous structure. Subsequently, an epitaxial layer is formed on the first main surface.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: January 23, 2024
    Assignee: Infineon Technologies AG
    Inventors: Iris Moder, Bernhard Goller, Tobias Franz Wolfgang Hoechbauer, Roland Rupp, Francisco Javier Santos Rodriguez, Hans-Joachim Schulze
  • Patent number: 11810779
    Abstract: A method includes: in a semiconductor wafer having a first semiconductor layer and a second semiconductor layer adjoining the first semiconductor layer, forming a porous region extending from a front surface into the first semiconductor layer; and removing the porous region by an etching process, wherein a doping concentration of the second semiconductor layer is less than 10?2 times a doping concentration of the first semiconductor layer and/or a doping type of the second semiconductor layer is complementary to a doping type of the first semiconductor layer, wherein forming the porous region comprises bringing in contact a porosifying agent with the front surface of the first semiconductor layer and applying a voltage between the first semiconductor layer and a first electrode that is in contact with the porosifying agent, wherein applying the voltage comprises applying the voltage between the first electrode and an edge region of the first semiconductor layer.
    Type: Grant
    Filed: June 16, 2022
    Date of Patent: November 7, 2023
    Assignee: Infineon Technologies AG
    Inventors: Sophia Friedler, Bernhard Goller, Iris Moder, Ingo Muri
  • Publication number: 20230275033
    Abstract: A semiconductor substrate includes a semiconductor base substrate. An alignment structure is formed on a surface of the semiconductor base substrate. An epitaxial layer is deposited on the surface of the semiconductor base substrate. The alignment structure includes an area of the surface of the semiconductor base substrate that is formed as a groove pattern. Grooves of the groove pattern are aligned with a specific crystallographic direction of the semiconductor base substrate. The specific crystallographic direction provides for a slower epitaxial growth rate on such a groove-patterned base substrate surface area compared to epitaxial growth on a surface of the semiconductor base substrate adjacent to the groove-patterned area.
    Type: Application
    Filed: February 14, 2023
    Publication date: August 31, 2023
    Inventors: Thomas Huber, Matthias Kuenle, Iris Moder, Joerg Ortner
  • Publication number: 20230127556
    Abstract: A method of processing a semiconductor wafer includes: forming one or more epitaxial layers over a first main surface of the semiconductor wafer; forming one or more porous layers in the semiconductor wafer or in the one or more epitaxial layers, wherein the semiconductor wafer, the one or more epitaxial layers and the one or more porous layers collectively form a substrate; forming doped regions of a semiconductor device in the one or more epitaxial layers; and after forming the doped regions of the semiconductor device, separating a non-porous part of the semiconductor wafer from a remainder of the substrate along the one or more porous layers.
    Type: Application
    Filed: May 12, 2022
    Publication date: April 27, 2023
    Inventors: Bernhard Goller, Alexander Binter, Tobias Hoechbauer, Martin Huber, Iris Moder, Matteo Piccin, Francisco Javier Santos Rodriguez, Hans-Joachim Schulze
  • Publication number: 20220359194
    Abstract: A semiconductor substrate includes a base portion, an auxiliary layer and a surface layer. The auxiliary layer is formed on the base portion. The surface layer is formed on the auxiliary layer. The surface layer is in contact with a first main surface of the semiconductor substrate. The auxiliary layer has a different electrochemical dissolution efficiency than the base portion and the surface layer. At least a portion of the auxiliary layer and at least a portion of the surface layer are converted into a porous structure. Subsequently, an epitaxial layer is formed on the first main surface.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 10, 2022
    Inventors: Iris MODER, Bernhard GOLLER, Tobias Franz Wolfgang HOECHBAUER, Roland RUPP, Francisco Javier SANTOS RODRIGUEZ, Hans-Joachim SCHULZE
  • Patent number: 11476111
    Abstract: A semiconductor substrate includes a base portion, an auxiliary layer and a surface layer. The auxiliary layer is formed on the base portion. The surface layer is formed on the auxiliary layer. The surface layer is in contact with a first main surface of the semiconductor substrate. The auxiliary layer has a different electrochemical dissolution efficiency than the base portion and the surface layer. At least a portion of the auxiliary layer and at least a portion of the surface layer are converted into a porous structure. Subsequently, an epitaxial layer is formed on the first main surface.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: October 18, 2022
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Iris Moder, Bernhard Goller, Tobias Franz Wolfgang Hoechbauer, Roland Rupp, Francisco Javier Santos Rodriguez, Hans-Joachim Schulze
  • Publication number: 20220310380
    Abstract: A method includes: in a semiconductor wafer having a first semiconductor layer and a second semiconductor layer adjoining the first semiconductor layer, forming a porous region extending from a front surface into the first semiconductor layer; and removing the porous region by an etching process, wherein a doping concentration of the second semiconductor layer is less than 10?2 times a doping concentration of the first semiconductor layer and/or a doping type of the second semiconductor layer is complementary to a doping type of the first semiconductor layer, wherein forming the porous region comprises bringing in contact a porosifying agent with the front surface of the first semiconductor layer and applying a voltage between the first semiconductor layer and a first electrode that is in contact with the porosifying agent, wherein applying the voltage comprises applying the voltage between the first electrode and an edge region of the first semiconductor layer.
    Type: Application
    Filed: June 16, 2022
    Publication date: September 29, 2022
    Inventors: Sophia Friedler, Bernhard Goller, Iris Moder, Ingo Muri
  • Publication number: 20220246745
    Abstract: A silicon carbide device includes a semiconductor substrate comprising a body region and transistor cell that comprises a source region, and a titanium carbide field electrode of the transistor cell, wherein the titanium carbide field electrode is connected to a reference voltage metallization structure or connectable to the reference voltage metallization structure by a switching device, wherein the reference voltage metallization is connected to a fixed voltage that is independent from a gate voltage of the transistor cell.
    Type: Application
    Filed: April 22, 2022
    Publication date: August 4, 2022
    Inventors: Ralf Siemieniec, Thomas Aichinger, Iris Moder, Francisco Javier Santos Rodriguez, Hans-Joachim Schulze, Carsten von Koblinski
  • Patent number: 11404262
    Abstract: A method includes: in a semiconductor wafer including a first semiconductor layer and a second semiconductor layer adjoining the first semiconductor layer, forming a porous region extending from a first surface into the first semiconductor layer; and removing the porous region by an etching process, wherein a doping concentration of the second semiconductor layer is less than 10?2 times a doping concentration of the first semiconductor layer and/or a doping type of the second semiconductor layer is complementary to a doping type of the first semiconductor layer.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: August 2, 2022
    Assignee: Infineon Technologies AG
    Inventors: Sophia Friedler, Bernhard Goller, Iris Moder, Ingo Muri
  • Patent number: 11373857
    Abstract: One or more semiconductor manufacturing methods and/or semiconductor arrangements are provided. In an embodiment, a silicon carbide (SiC) layer is provided. The SiC layer has a first portion overlying a second portion. The first portion has a first side distal the second portion and a second side proximal the second portion. The first portion is converted into a porous layer overlying the second portion. The porous layer has a first side distal the second portion and a second side proximal the second portion. The porous layer is removed to expose a first side of the second portion. After removing the porous layer, the first side of the second portion has a surface roughness less than a surface roughness of the first side of the first portion and/or less than a surface roughness of the first side of the porous layer.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: June 28, 2022
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Bernhard Goller, Iris Moder, Petra Fischer
  • Patent number: 11342433
    Abstract: A silicon carbide device includes a silicon carbide substrate having a body region and a source region of a transistor cell. Further, the silicon carbide device includes a titanium carbide gate electrode of the transistor cell.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: May 24, 2022
    Assignee: Infineon Technologies AG
    Inventors: Ralf Siemieniec, Thomas Aichinger, Iris Moder, Francisco Javier Santos Rodriguez, Hans-Joachim Schulze, Carsten von Koblinski
  • Publication number: 20210391377
    Abstract: A method of manufacturing a semiconductor device is described. The method includes providing a semiconductor substrate. The semiconductor substrate includes a high-doped semiconductor substrate layer, a high-doped semiconductor device layer, and a low-doped semiconductor etch stop layer arranged between the high-doped semiconductor substrate layer and the high-doped semiconductor device layer. The high-doped semiconductor substrate layer is removed, wherein the removing includes dopant selective chemical etching stopping at the low-doped semiconductor etch stop layer. Further, the low-doped semiconductor etch stop layer is thinned to generate an exposed surface of the high-doped semiconductor device layer.
    Type: Application
    Filed: June 11, 2021
    Publication date: December 16, 2021
    Inventors: Alexander Frey, Bernhard Goller, Iris Moder, Ingo Muri, Alfred Sigl, Tobias Weindler
  • Publication number: 20210391218
    Abstract: A method of manufacturing a semiconductor device is described. A semiconductor substrate is provided. The semiconductor substrate includes a semiconductor substrate layer and a semiconductor device layer. The method includes transforming areas of the semiconductor device layer into dicing areas which can be removed by etching, and removing the semiconductor substrate layer and the dicing areas by using etching.
    Type: Application
    Filed: June 10, 2021
    Publication date: December 16, 2021
    Inventors: Felix Johannes Heinrich Ernst, Bernhard Goller, Iris Moder, Ingo Muri
  • Publication number: 20210265468
    Abstract: A semiconductor device includes a semiconductor substrate having a first dopant and a second dopant. A covalent atomic radius of a material of the semiconductor substrate is i) larger than a covalent atomic radius of the first dopant and smaller than a covalent atomic radius of the second dopant, or ii) smaller than the covalent atomic radius of the first dopant and larger than the covalent atomic radius of the second dopant. The semiconductor device further includes a semiconductor layer on the semiconductor substrate and semiconductor device elements in the semiconductor layer. A vertical concentration profile of the first dopant decreases along at least 80% of a distance between an interface of the semiconductor substrate and the semiconductor layer to a surface of the semiconductor substrate opposite to the interface.
    Type: Application
    Filed: April 21, 2021
    Publication date: August 26, 2021
    Inventors: Ingo Muri, Johannes Konrad Baumgartl, Oliver Hellmund, Jacob Tillmann Ludwig, Iris Moder, Thomas Neidhart, Gerhard Schmidt, Hans-Joachim Schulze
  • Patent number: 11038028
    Abstract: A method of manufacturing a semiconductor device includes providing a semiconductor substrate having opposing first and second main surfaces and first and second dopants. A covalent atomic radius of a material of the substrate is i) larger than a covalent atomic radius of the first dopant and smaller than that of the second dopant, or ii) smaller than the covalent atomic radius of the first dopant and larger than that of the second dopant. A vertical extension of the first dopant into the substrate from the first main surface ends at a bottom of a substrate portion at a first vertical distance to the first main surface. The method further includes forming a semiconductor layer on the first main surface, forming semiconductor device elements in the semiconductor layer, and reducing a thickness of the substrate by removing material from the second main surface at least up to the substrate portion.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: June 15, 2021
    Assignee: Infineon Technologies AG
    Inventors: Ingo Muri, Johannes Konrad Baumgartl, Oliver Hellmund, Jacob Tillmann Ludwig, Iris Moder, Thomas Christian Neidhart, Gerhard Schmidt, Hans-Joachim Schulze
  • Patent number: 11011409
    Abstract: A semiconductor device includes a first epitaxial layer, a second epitaxial layer disposed below the first epitaxial layer, a conductive layer disposed below and directly contacting the second epitaxial layer, and a plurality of spacers disposed between the second epitaxial layer and the conductive layer. The conductive layer includes a metal. The plurality of spacers include a bulk semiconductor material.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: May 18, 2021
    Assignee: Infineon Technologies AG
    Inventors: Oliver Hellmund, Ingo Muri, Johannes Baumgartl, Iris Moder, Thomas Christian Neidhart, Hans-Joachim Schulze
  • Publication number: 20200365385
    Abstract: One or more semiconductor manufacturing methods and/or semiconductor arrangements are provided. In an embodiment, a silicon carbide (SiC) layer is provided. The SiC layer has a first portion overlying a second portion. The first portion has a first side distal the second portion and a second side proximal the second portion. The first portion is converted into a porous layer overlying the second portion. The porous layer has a first side distal the second portion and a second side proximal the second portion. The porous layer is removed to expose a first side of the second portion. After removing the porous layer, the first side of the second portion has a surface roughness less than a surface roughness of the first side of the first portion and/or less than a surface roughness of the first side of the porous layer.
    Type: Application
    Filed: May 14, 2019
    Publication date: November 19, 2020
    Inventors: Bernhard GOLLER, Iris Moder, Petra Fischer
  • Patent number: 10802404
    Abstract: An exposure method includes projecting a reticle pattern into a first exposure field of a photoresist layer, wherein the reticle pattern includes first and second line patterns on opposite edges of the reticle pattern and wherein at least the first line pattern includes an end section through which light flux decreases outwards. The reticle pattern is further projected into a second exposure field of the photoresist layer, wherein a first tapering projection zone of the end section of the first line pattern in the second exposure field overlaps a projection area of the second line pattern in the first exposure field.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: October 13, 2020
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Joerg Ortner, Iris Moder, Ingo Muri
  • Publication number: 20200286730
    Abstract: A semiconductor substrate includes a base portion, an auxiliary layer and a surface layer. The auxiliary layer is formed on the base portion. The surface layer is formed on the auxiliary layer. The surface layer is in contact with a first main surface of the semiconductor substrate. The auxiliary layer has a different electrochemical dissolution efficiency than the base portion and the surface layer. At least a portion of the auxiliary layer and at least a portion of the surface layer are converted into a porous structure. Subsequently, an epitaxial layer is formed on the first main surface.
    Type: Application
    Filed: March 6, 2020
    Publication date: September 10, 2020
    Inventors: Iris MODER, Bernhard GOLLER, Tobias Franz Wolfgang HOECHBAUER, Roland RUPP, Francisco Javier SANTOS RODRIGUEZ, Hans-Joachim SCHULZE
  • Patent number: 10714377
    Abstract: A method of manufacturing a semiconductor device includes forming an auxiliary mask including a plurality of mask openings on a main surface of a crystalline semiconductor substrate. A porous structure is formed in the semiconductor substrate. The porous structure includes a porous layer at a distance to the main surface and porous columns that extend from the porous layer into direction of the main surface and that are laterally separated from each other by a non-porous portion. A non-porous device layer is formed on the non-porous portion and on the porous columns.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: July 14, 2020
    Assignee: Infineon Technologies AG
    Inventors: Ingo Muri, Bernhard Goller, Iris Moder, Hans-Joachim Schulze